CCPortal
DOI10.3390/su12052099
Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison
Zhu, Xiaobo; He, Honglin; Ma, Mingguo; Ren, Xiaoli; Zhang, Li; Zhang, Fawei; Li, Yingnian; Shi, Peili; Chen, Shiping; Wang, Yanfen; Xin, Xiaoping; Ma, Yaoming; Zhang, Yu; Du, Mingyuan; Ge, Rong; Zeng, Na; Li, Pan; Niu, Zhongen; Zhang, Liyun; Lv, Yan; Song, Zengjing; Gu, Qing
通讯作者Ma, MG (通讯作者)
发表日期2020
EISSN2071-1050
卷号12期号:5
英文摘要While a number of machine learning (ML) models have been used to estimate RE, systematic evaluation and comparison of these models are still limited. In this study, we developed three traditional ML models and a deep learning (DL) model, stacked autoencoders (SAE), to estimate RE in northern China's grasslands. The four models were trained with two strategies: training for all of northern China's grasslands and separate training for the alpine and temperate grasslands. Our results showed that all four ML models estimated RE in northern China's grasslands fairly well, while the SAE model performed best (R-2 = 0.858, RMSE = 0.472 gC m(-2) d(-1), MAE = 0.304 gC m(-2) d(-1)). Models trained with the two strategies had almost identical performances. The enhanced vegetation index and soil organic carbon density (SOCD) were the two most important environmental variables for estimating RE in the grasslands of northern China. Air temperature (Ta) was more important than the growing season land surface water index (LSWI) in the alpine grasslands, while the LSWI was more important than Ta in the temperate grasslands. These findings may promote the application of DL models and the inclusion of SOCD for RE estimates with increased accuracy.
英文关键词ecosystem respiration; machine learning; deep learning; grasslands; northern China
语种英语
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS记录号WOS:000522470900400
来源期刊SUSTAINABILITY
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/260072
推荐引用方式
GB/T 7714
Zhu, Xiaobo,He, Honglin,Ma, Mingguo,et al. Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison[J]. 中国科学院青藏高原研究所,2020,12(5).
APA Zhu, Xiaobo.,He, Honglin.,Ma, Mingguo.,Ren, Xiaoli.,Zhang, Li.,...&Gu, Qing.(2020).Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison.SUSTAINABILITY,12(5).
MLA Zhu, Xiaobo,et al."Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison".SUSTAINABILITY 12.5(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Xiaobo]的文章
[He, Honglin]的文章
[Ma, Mingguo]的文章
百度学术
百度学术中相似的文章
[Zhu, Xiaobo]的文章
[He, Honglin]的文章
[Ma, Mingguo]的文章
必应学术
必应学术中相似的文章
[Zhu, Xiaobo]的文章
[He, Honglin]的文章
[Ma, Mingguo]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。