CCPortal
DOI10.1073/pnas.2104732118
Structure-based identification of sensor species for anticipating critical transitions
Aparicio A.; Velasco-Hernández J.X.; Moog C.H.; Liu Y.-Y.; Angulo M.T.
发表日期2021
ISSN0027-8424
卷号118期号:51
英文摘要Ecological systems can undergo sudden, catastrophic changes known as critical transitions. Anticipating these critical transitions remains challenging in systems with many species because the associated early warning signals can be weakly present or even absent in some species, depending on the system dynamics. Therefore, our limited knowledge of ecological dynamics may suggest that it is hard to identify those species in the system that display early warning signals. Here, we show that, in mutualistic ecological systems, it is possible to identify species that early anticipate critical transitions by knowing only the system structure—that is, the network topology of plant–animal interactions. Specifically, we leverage the mathematical theory of structural observability of dynamical systems to identify a minimum set of “sensor species,” whose measurement guarantees that we can infer changes in the abundance of all other species. Importantly, such a minimum set of sensor species can be identified by using the system structure only. We analyzed the performance of such minimum sets of sensor species for detecting early warnings using a large dataset of empirical plant–pollinator and seed-dispersal networks. We found that species that are more likely to be sensors tend to anticipate earlier critical transitions than other species. Our results underscore how knowing the structure of multispecies systems can improve our ability to anticipate critical transitions. © 2021 National Academy of Sciences. All rights reserved.
英文关键词Critical transitions; Observability; Pollination; Seed dispersal
语种英语
scopus关键词biological model; ecosystem; environmental aspects and related phenomena; symbiosis; Ecological and Environmental Phenomena; Ecosystem; Models, Biological; Symbiosis
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/250917
作者单位Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, 76230, Mexico; Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States; Laboratoire des Sciences du Numérique de Nantes, UMR 6004, CNRS, Nantes, 44321, France; Consejo Nacional de Ciencia y Tecnología, Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, 76230, Mexico
推荐引用方式
GB/T 7714
Aparicio A.,Velasco-Hernández J.X.,Moog C.H.,et al. Structure-based identification of sensor species for anticipating critical transitions[J],2021,118(51).
APA Aparicio A.,Velasco-Hernández J.X.,Moog C.H.,Liu Y.-Y.,&Angulo M.T..(2021).Structure-based identification of sensor species for anticipating critical transitions.Proceedings of the National Academy of Sciences of the United States of America,118(51).
MLA Aparicio A.,et al."Structure-based identification of sensor species for anticipating critical transitions".Proceedings of the National Academy of Sciences of the United States of America 118.51(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aparicio A.]的文章
[Velasco-Hernández J.X.]的文章
[Moog C.H.]的文章
百度学术
百度学术中相似的文章
[Aparicio A.]的文章
[Velasco-Hernández J.X.]的文章
[Moog C.H.]的文章
必应学术
必应学术中相似的文章
[Aparicio A.]的文章
[Velasco-Hernández J.X.]的文章
[Moog C.H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。