Climate Change Data Portal
| DOI | 10.1038/s41467-022-28033-0 |
| Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning | |
| Bolibar J.; Rabatel A.; Gouttevin I.; Zekollari H.; Galiez C. | |
| 发表日期 | 2022 |
| ISSN | 2041-1723 |
| 卷号 | 13期号:1 |
| 英文摘要 | Glaciers and ice caps are experiencing strong mass losses worldwide, challenging water availability, hydropower generation, and ecosystems. Here, we perform the first-ever glacier evolution projections based on deep learning by modelling the 21st century glacier evolution in the French Alps. By the end of the century, we predict a glacier volume loss between 75 and 88%. Deep learning captures a nonlinear response of glaciers to air temperature and precipitation, improving the representation of extreme mass balance rates compared to linear statistical and temperature-index models. Our results confirm an over-sensitivity of temperature-index models, often used by large-scale studies, to future warming. We argue that such models can be suitable for steep mountain glaciers. However, glacier projections under low-emission scenarios and the behaviour of flatter glaciers and ice caps are likely to be biased by mass balance models with linear sensitivities, introducing long-term biases in sea-level rise and water resources projections. © 2022, The Author(s). |
| 语种 | 英语 |
| scopus关键词 | air temperature; climate change; future prospect; glacier mass balance; ice cap; machine learning; nonlinearity; sensitivity analysis; air temperature; article; climate change; deep learning; glacier; ice cap; precipitation; sea level rise; temperature sensitivity; warming; water availability; Alps; mountain; Alps; France |
| 来源期刊 | Nature Communications
![]() |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/250527 |
| 作者单位 | Univ. Grenoble Alpes, CNRS, IRD, G-INP, Institut des Géosciences de l’Environnement, Grenoble, France; INRAE, UR RiverLy, Lyon-Villeurbanne, France; Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, Netherlands; Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de la Neige, Grenoble, France; Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, Netherlands; Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium; Univ. Grenoble Alpes, CNRS, G-INP, Laboratoire Jean Kuntzmann, Grenoble, France |
| 推荐引用方式 GB/T 7714 | Bolibar J.,Rabatel A.,Gouttevin I.,et al. Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning[J],2022,13(1). |
| APA | Bolibar J.,Rabatel A.,Gouttevin I.,Zekollari H.,&Galiez C..(2022).Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning.Nature Communications,13(1). |
| MLA | Bolibar J.,et al."Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning".Nature Communications 13.1(2022). |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。