Climate Change Data Portal
DOI | 10.1016/j.atmosenv.2020.117534 |
Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron | |
Feng R.; Gao H.; Luo K.; Fan J.-R. | |
发表日期 | 2020 |
ISSN | 1352-2310 |
卷号 | 232 |
英文摘要 | Whether PM2.5 can be long-range transported and what role secondary inorganic aerosols play in the episodes of haze have aroused numerous debates. In this work, Multi-layer Perceptron (MLP) is used to analyze and predict ambient PM2.5 in eight regional core cities in China to resolve the clashes, and the conclusions are listed as follows. Gaseous air pollutants (SO2, NO2, O3 and CO) are way more momentous than meteorological conditions in shaping PM2.5. PM2.5 level is dominated by the ups and downs of gaseous air pollutants, indicating the predominance of secondary inorganic aerosols and the existence of thermodynamic equilibrium between PM2.5 and gaseous air pollutants. The secondary PM2.5 tends to be generated within one hour. We quantitatively demonstrate that the primary emissions change and long-range transport are ubiquitously and conspicuously insignificant throughout the main cities of China and reductions of the gaseous air pollutants are most essential for regulating PM2.5. Furthermore, the phenology of local flora as the minor cause and lopsided thermodynamic equilibrium shift triggered by temperature change as the major cause elicit the severity of PM2.5 in wintertime--for every Celsius degree of temperature drop, PM2.5 increases by 5.9 μg/m3. © 2020 Elsevier Ltd |
关键词 | Insignificance of long-range transportMachine learningSecondary inorganic aerosolsThermodynamic equilibrium |
语种 | 英语 |
scopus关键词 | Aerosols; Atmospheric movements; Accurate prediction; Long range transport; Meteorological condition; Multi layer perceptron; Primary emissions; Secondary inorganic aerosol; Temperature changes; Thermodynamic equilibria; Air pollution; carbon monoxide; nitrogen dioxide; ozone; sulfur dioxide; aerosol; ambient air; atmospheric pollution; climate conditions; long range transport; particulate matter; prediction; aerosol; air pollutant; air pollution; air temperature; ambient air; Article; atmosphere; atmospheric transport; China; city; flora; geographic distribution; measurement accuracy; meteorology; multilayer perceptron; particulate matter; phenology; prediction; priority journal; quantitative analysis; secondary inorganic aerosol; thermodynamics; winter; China |
来源期刊 | ATMOSPHERIC ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/249147 |
作者单位 | State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China; Hangzhou Feng's Culture Creation Co., Ltd, Hangzhou, 310027, China; Zhejiang Construction Investment Environment Engineering Co, Ltd., Hangzhou, 310013, China |
推荐引用方式 GB/T 7714 | Feng R.,Gao H.,Luo K.,et al. Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron[J],2020,232. |
APA | Feng R.,Gao H.,Luo K.,&Fan J.-R..(2020).Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron.ATMOSPHERIC ENVIRONMENT,232. |
MLA | Feng R.,et al."Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron".ATMOSPHERIC ENVIRONMENT 232(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Feng R.]的文章 |
[Gao H.]的文章 |
[Luo K.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Feng R.]的文章 |
[Gao H.]的文章 |
[Luo K.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Feng R.]的文章 |
[Gao H.]的文章 |
[Luo K.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。