CCPortal
DOI10.5194/acp-20-4787-2020
Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere
Droste E.S.; Adcock K.E.; Ashfold M.J.; Chou C.; Fleming Z.; Fraser P.J.; Gooch L.J.; Hind A.J.; Langenfelds R.L.; Elvidge E.L.; Hanif N.M.; O'Doherty S.; Oram D.E.; Ou-Yang C.-F.; Panagi M.; Reeves C.E.; Sturges W.T.; Laube J.C.
发表日期2020
ISSN1680-7316
起始页码4787
结束页码4807
卷号20期号:8
英文摘要Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: coctafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), ndodecafluoropentane (n-C5F12), n-tetradecafluorohexane (nC6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote "background" Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere. © 2020 Author(s).
语种英语
scopus关键词atmospheric chemistry; concentration (composition); emission control; global warming; greenhouse gas; Northern Hemisphere; organofluorine; source apportionment; trend analysis; Australia; Cape Grim; Tasmania; United Kingdom
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/247827
作者单位Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, 43500, Malaysia; Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan; National Centre for Atmospheric Science (NCAS), Department of Chemistry, University of Leicester, Leicester, United Kingdom; Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere, Climate Science Centre, Aspendale, Australia; Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia; Department of Chemistry, University of Bristol, Bristol, United Kingdom; National Centre for Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom; Department of Atmospheric Sciences, National Central University, Taoyuan, ...
推荐引用方式
GB/T 7714
Droste E.S.,Adcock K.E.,Ashfold M.J.,et al. Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere[J],2020,20(8).
APA Droste E.S..,Adcock K.E..,Ashfold M.J..,Chou C..,Fleming Z..,...&Laube J.C..(2020).Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(8).
MLA Droste E.S.,et al."Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.8(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Droste E.S.]的文章
[Adcock K.E.]的文章
[Ashfold M.J.]的文章
百度学术
百度学术中相似的文章
[Droste E.S.]的文章
[Adcock K.E.]的文章
[Ashfold M.J.]的文章
必应学术
必应学术中相似的文章
[Droste E.S.]的文章
[Adcock K.E.]的文章
[Ashfold M.J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。