Climate Change Data Portal
DOI | 10.5194/acp-20-10493-2020 |
Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia | |
Bonne J.-L.; Meyer H.; Behrens M.; Boike J.; Kipfstuhl S.; Rabe B.; Schmidt T.; Schönicke L.; Steen-Larsen H.C.; Werner M. | |
发表日期 | 2020 |
ISSN | 1680-7316 |
起始页码 | 10493 |
结束页码 | 10511 |
卷号 | 20期号:17 |
英文摘要 | In the context of the Arctic amplification of climate change affecting the regional atmospheric hydrological cycle, it is crucial to characterize the present-day moisture sources of the Arctic. The isotopic composition is an important tool to enhance our understanding of the drivers of the hydrological cycle due to the different molecular characteristics of water stable isotopes during phase change. This study introduces 2 years of continuous in situ water vapour and precipitation isotopic observations conducted since July 2015 in the eastern Siberian Lena delta at the research station on Samoylov Island. The vapour isotopic signals are dominated by variations at seasonal and synoptic timescales. Diurnal variations of the vapour isotopic signals are masked by synoptic variations, indicating low variations of the amplitude of local sources at the diurnal scale in winter, summer and autumn. Low-amplitude diurnal variations in spring may indicate exchange of moisture between the atmosphere and the snow-covered surface. Moisture source diagnostics based on semi-Lagrangian backward trajectories reveal that different air mass origins have contrasting contributions to the moisture budget of the Lena delta region. At the seasonal scale, the distance from the net moisture sources to the arrival site strongly varies. During the coldest months, no contribution from local secondary evaporation is observed. Variations of the vapour isotopic composition during the cold season on the synoptic timescale are strongly related to moisture source regions and variations in atmospheric transport: warm and isotopically enriched moist air is linked to fast transport from the Atlantic sector, while dry and cold air with isotopically depleted moisture is generally associated with air masses moving slowly over northern Eurasia. © 2020 Author(s). |
语种 | 英语 |
scopus关键词 | atmospheric chemistry; atmospheric moisture; atmospheric transport; hydrological cycle; isotopic composition; temporal variation; water vapor; Lena Delta; Russian Federation; Sakha; Siberia |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/247535 |
作者单位 | Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27515, Germany; Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, 14401, Germany; Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099, Germany; Geophysical Institute, University of Bergen, Bergen, 5020, Norway; Bjerknes Centre for Climate Research, Bergen, 5020, Norway |
推荐引用方式 GB/T 7714 | Bonne J.-L.,Meyer H.,Behrens M.,et al. Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia[J],2020,20(17). |
APA | Bonne J.-L..,Meyer H..,Behrens M..,Boike J..,Kipfstuhl S..,...&Werner M..(2020).Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia.ATMOSPHERIC CHEMISTRY AND PHYSICS,20(17). |
MLA | Bonne J.-L.,et al."Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia".ATMOSPHERIC CHEMISTRY AND PHYSICS 20.17(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。