CCPortal
DOI10.5194/acp-21-4169-2021
COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas
Grange S.K.; Lee J.D.; Drysdale W.S.; Lewis A.C.; Hueglin C.; Emmenegger L.; Carslaw D.C.
发表日期2021
ISSN1680-7316
起始页码4169
结束页码4185
卷号21期号:5
英文摘要In March 2020, non-pharmaceutical intervention measures in the form of lockdowns were applied across Europe to urgently reduce the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus which causes the COVID-19 disease. The aggressive curtailing of the European economy had widespread impacts on the atmospheric composition, particularly for nitrogen dioxide (NO2) and ozone (O3). To investigate these changes, we analyse data from 246 ambient air pollution monitoring sites in 102 urban areas and 34 countries in Europe between February and July 2020. Counterfactual, businessas-usual air quality time series are created using machinelearning models to account for natural weather variability. Across Europe, we estimate that NO2 concentrations were 34 % and 32 % lower than expected for respective traffic and urban background locations, whereas O3 was 30 % and 21 % higher (in the same respective environments) at the point of maximum restriction on mobility. To put the 2020 changes into context, average NO2 trends since 2010 were calculated, and the changes experienced across European urban areas in 2020 was equivalent to 7.6 years of average NO2 reduction (or concentrations which might be anticipated in 2028). Despite NO2 concentrations decreasing by approximately a third, total oxidant (Ox) changed little, suggesting that the reductions in NO2 were substituted by increases in O3. The lockdown period demonstrated that the expected future reductions in NO2 in European urban areas are likely to lead to widespread increases in urban O3 pollution unless additional mitigation measures are introduced. © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.
语种英语
scopus关键词air quality; ambient air; atmospheric pollution; concentration (composition); COVID-19; disease transmission; ozone; risk assessment; urban area; Europe; SARS coronavirus
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/247053
作者单位Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland; Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, United Kingdom; National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, United Kingdom; Ricardo Energy and Environment, Harwell, Oxfordshire, OX11 0QR, United Kingdom
推荐引用方式
GB/T 7714
Grange S.K.,Lee J.D.,Drysdale W.S.,et al. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas[J],2021,21(5).
APA Grange S.K..,Lee J.D..,Drysdale W.S..,Lewis A.C..,Hueglin C..,...&Carslaw D.C..(2021).COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas.ATMOSPHERIC CHEMISTRY AND PHYSICS,21(5).
MLA Grange S.K.,et al."COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas".ATMOSPHERIC CHEMISTRY AND PHYSICS 21.5(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Grange S.K.]的文章
[Lee J.D.]的文章
[Drysdale W.S.]的文章
百度学术
百度学术中相似的文章
[Grange S.K.]的文章
[Lee J.D.]的文章
[Drysdale W.S.]的文章
必应学术
必应学术中相似的文章
[Grange S.K.]的文章
[Lee J.D.]的文章
[Drysdale W.S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。