CCPortal
DOI10.2166/nh.2020.012
Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region
Wu, Min; Feng, Qi; Wen, Xiaohu; Deo, Ravinesh C.; Yin, Zhenliang; Yang, Linshan; Sheng, Danrui
发表日期2020
ISSN0029-1277
EISSN2224-7955
起始页码648
结束页码665
卷号51期号:4
英文摘要The study evaluates the potential utility of the random forest (RF) predictive model used to simulate daily reference evapotranspiration (ET0) in two stations located in the arid oasis area of northwestern China. To construct an accurate RF-based predictive model, ET(0)is estimated by an appropriate combination of model inputs comprising maximum air temperature (T-max), minimum air temperature (T-min), sunshine durations (S-un), wind speed (U-2), and relative humidity (R-h). The output of RF models are tested by ET(0)calculated using Penman-Monteith FAO 56 (PMF-56) equation. Results showed that the RF model was considered as a better way to predict ET(0)for the arid oasis area with limited data. Besides,R(h)was the most influential factor on the behavior of ET0, except for air temperature in the proposed arid area. Moreover, the uncertainty analysis with a Monte Carlo method was carried out to verify the reliability of the results, and it was concluded that RF model had a lower uncertainty and can be used successfully in simulating ET0. The proposed study shows RF as a sound modeling approach for the prediction of ET(0)in the arid areas where reliable weather data sets are available, but relatively limited.
英文关键词arid areas; evapotranspiration; Monte Carlo; predict; random forest
WOS研究方向Water Resources
WOS类目Water Resources
WOS关键词ARTIFICIAL NEURAL-NETWORK ; SUPPORT-VECTOR-MACHINE ; LIMITED CLIMATIC DATA ; WEATHER PARAMETERS ; REGRESSION ; CLASSIFICATION ; SVM
WOS记录号WOS:000565303800005
来源期刊HYDROLOGY RESEARCH
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/239342
作者单位[Wu, Min; Feng, Qi; Wen, Xiaohu; Yin, Zhenliang; Yang, Linshan; Sheng, Danrui] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Ecohydrol Inland River Basin, Lanzhou 730000, Peoples R China; [Wu, Min; Sheng, Danrui] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Deo, Ravinesh C.] Univ Southern Queensland, Sch Agr Computat & Environm Sci, Ctr Sustainable Agr Syst, Springfield, Qld 4300, Australia
推荐引用方式
GB/T 7714
Wu, Min,Feng, Qi,Wen, Xiaohu,et al. Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region[J]. 中国科学院西北生态环境资源研究院,2020,51(4).
APA Wu, Min.,Feng, Qi.,Wen, Xiaohu.,Deo, Ravinesh C..,Yin, Zhenliang.,...&Sheng, Danrui.(2020).Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region.HYDROLOGY RESEARCH,51(4).
MLA Wu, Min,et al."Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region".HYDROLOGY RESEARCH 51.4(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Min]的文章
[Feng, Qi]的文章
[Wen, Xiaohu]的文章
百度学术
百度学术中相似的文章
[Wu, Min]的文章
[Feng, Qi]的文章
[Wen, Xiaohu]的文章
必应学术
必应学术中相似的文章
[Wu, Min]的文章
[Feng, Qi]的文章
[Wen, Xiaohu]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。