Climate Change Data Portal
DOI | 10.1029/2021JD034704 |
Remote Sensing of Electric Fields Observed Within Winter Precipitation During the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Field Campaign | |
Schultz C.J.; Harkema S.S.; Mach D.M.; Bateman M.; Lang T.J.; Heymsfield G.M.; McLinden M.L.; Li L.; Poellot M.; Sand K. | |
发表日期 | 2021 |
ISSN | 2169-897X |
卷号 | 126期号:16 |
英文摘要 | Aircraft electric fields from NASA's Lightning Instrument Package (LIP) were coupled with other airborne and ground-based, and in situ measurements to understand electrification in winter clouds that did not produce lightning. The measurements were made during seven research flights by a NASA ER-2 during the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. Observed total electric field magnitudes were as high as 80 V m−1 and variability in the electric field was observed along the flight path of the ER-2, indicating horizontal and/or vertical inhomogeneity in the cloud's electrical structure. X-band airborne radar data indicated 20-dBZ echo tops above 5 km in regions where electrification exceeded 10 V m−1. In these regions, 85-GHz brightness temperatures (TB) from an airborne radiometer were lower than 265 K, with the lowest TB (∼210 K) associated with ice scattering collocated with the strongest electric fields. In situ microphysical measurements from the NASA P-3 aircraft on February 7 indicated that regions near strong electric field contained supercooled water, rimed ice hydrometeors, ice water p- content as high as 1 g m−3, liquid water content as high as 0.15 g m−3, and supersaturation as high as 3.5%. These observations support the role of mixed phase microphysics in the generation of electric fields in clouds. In three case studies, ground based S-band polarimetric radar observed depolarization streaks in differential reflectivity near areas where the strongest electrification was observed. This observation reinforces the utility of depolarization streaks to identify areas of electrification prior to lightning occurrence. © 2021. American Geophysical Union. All Rights Reserved. This article has been contributed to by US Government employees and their work is in the public domain in the USA. |
英文关键词 | depolarization; electrification; IMPACTS; microphysics; winter storms |
来源期刊 | Journal of Geophysical Research: Atmospheres |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/237104 |
作者单位 | Earth Science Branch, NASA Marshall Space Flight Center, Huntsville, AL, United States; Department of Atmospheric Science, University of Alabama Huntsville, Huntsville, AL, United States; Science and Technology Institute, Universities Space Research Association, Huntsville, AL, United States; Goddard Space Flight Center, Greenbelt, MD, United States; Department of Atmospheric Science, University of North Dakota, Grand Forks, ND, United States |
推荐引用方式 GB/T 7714 | Schultz C.J.,Harkema S.S.,Mach D.M.,et al. Remote Sensing of Electric Fields Observed Within Winter Precipitation During the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Field Campaign[J],2021,126(16). |
APA | Schultz C.J..,Harkema S.S..,Mach D.M..,Bateman M..,Lang T.J..,...&Sand K..(2021).Remote Sensing of Electric Fields Observed Within Winter Precipitation During the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Field Campaign.Journal of Geophysical Research: Atmospheres,126(16). |
MLA | Schultz C.J.,et al."Remote Sensing of Electric Fields Observed Within Winter Precipitation During the 2020 Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Field Campaign".Journal of Geophysical Research: Atmospheres 126.16(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。