CCPortal
DOIhttps://doi.org/10.1594/PANGAEA.875342
Seawater carbonate chemistry and data of physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment
Xu; Zhiguang; Gao; Guang; Xu; Juntian; Wu; Hongyan
发布日期2017-05-17
数据集类型dataset
英文关键词Benthos ; Bottles or small containers/Aquaria ( 20 L) ; Chromista ; Coast and continental shelf ; Growth/Morphology ; Laboratory experiment ; Macroalgae ; Macro-nutrients ; North Pacific ; Ochrophyta ; Other metabolic rates ; Primary production/Photosynthesis ; Respiration ; Sargassum muticum ; Single species ; Temperate
英文简介The development of golden tides is potentially influenced by global change factors, such as ocean acidification and eutrophication, but related studies are very scarce. In this study, we cultured a golden tide alga, Sargasssum muticum, at two levels of pCO2 (400 and 1000 µatm) and phosphate (0.5 and 40?µM) to investigate the interactive effects of elevated pCO2 and phosphate on the physiological properties of the thalli. Higher pCO2 and phosphate (P) levels alone increased the relative growth rate by 41 and 48%, the net photosynthetic rate by 46 and 55 %, and the soluble carbohydrates by 33 and 62 %, respectively, while the combination of these two levels did not promote growth or soluble carbohydrates further. The higher levels of pCO2 and P alone also enhanced the nitrate uptake rate by 68 and 36 %, the nitrate reductase activity (NRA) by 89 and 39 %, and the soluble protein by 19 and 15 %, respectively. The nitrate uptake rate and soluble protein was further enhanced, although the nitrate reductase activity was reduced when the higher levels of pCO2 and P worked together. The higher pCO2 and higher P levels alone did not affect the dark respiration rate of the thalli, but together they increased it by 32 % compared to the condition of lower pCO2 and lower P. The neutral effect of the higher levels of pCO2 and higher P on growth and soluble carbohydrates, combined with the promoting effect on soluble protein and dark respiration, suggests that more energy was drawn from carbon assimilation to nitrogen assimilation under conditions of higher pCO2 and higher P; this is most likely to act against the higher pCO2 that caused acid-base perturbation via synthesizing H+ transport-related protein. Our results indicate that ocean acidification and eutrophication may not boost golden tide events synergistically, although each one has a promoting effect.
空间范围Latitude: 37.250000 * Longitude: 122.583330
语种英语
国家国际
学科大类气候变化
学科子类气候变化
文献类型数据集
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/216491
推荐引用方式
GB/T 7714
Xu,Zhiguang,Gao,et al. Seawater carbonate chemistry and data of physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment.2017-05-17.https://doi.org/10.1594/PANGAEA.875342.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu]的文章
[Zhiguang]的文章
[Gao]的文章
百度学术
百度学术中相似的文章
[Xu]的文章
[Zhiguang]的文章
[Gao]的文章
必应学术
必应学术中相似的文章
[Xu]的文章
[Zhiguang]的文章
[Gao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。