CCPortal
DOIhttps://doi.org/10.1594/PANGAEA.869107
Amino acid 13C values of lab-cultured Thalassiosira weissflogii
Larsen; Thomas
发布日期2015-12-05
数据集类型dataset
英文简介Burial of organic carbon in marine sediments has a profound influence in marine biogeochemical cycles and provides a sink for greenhouse gases such as CO2 and CH4. However, tracing organic carbon from primary production sources as well as its transformations in the sediment record remains challenging. Here we examine a novel but growing tool for tracing the biosynthetic origin of amino acid carbon skeletons, based on naturally occurring stable carbon isotope patterns in individual amino acids (d13C_AA). We focus on two important aspects for d13C_AA utility in sedimentary paleoarchives: first, the fidelity of source diagnostic of algal d13C_AA patterns across different oceanographic growth conditions, and second, the ability of d13C_AA patterns to record the degree of subsequent microbial amino acid synthesis after sedimentary burial. Using the marine diatom Thalassiosira weissflogii, we tested under controlled conditions how d13C_AA patterns respond to changing environmental conditions, including light, salinity, temperature, and pH. Our findings show that while differing oceanic growth conditions can change macromolecular cellular composition, d13C_AA isotopic patterns remain largely invariant. These results emphasize that d13C_AA patterns should accurately record biosynthetic sources across widely disparate oceanographic conditions. We also explored how d13C_AA patterns change as a function of age, total nitrogen and organic carbon content after burial, in a marine sediment core from a coastal upwelling area off Peru. Based on the four most informative amino acids for distinguishing between diatom and bacterial sources (i.e., isoleucine, lysine, leucine and tyrosine), bacterially derived amino acids ranged from 10 to 15 % in the sediment layers from the last 5000 years, and up to 35 % during the last glacial period. The greater bacterial contributions in older sediments indicate that bacterial activity and amino acid resynthesis progressed, approximately as a function of sediment age, to a substantially larger degree than suggested by changes in total organic nitrogen and carbon content. It is uncertain whether archaea may have contributed to sedimentary d13C_AA patterns we observe, and controlled culturing studies will be needed to investigate whether d13C_AA patterns can differentiate bacterial from archeal sources. Further research efforts are also needed to understand how closely d13C_AA patterns derived from hydrolyzable amino acids represent total sedimentary proteineincous material, and more broadly sedimentary organic nitrogen. Overall, however, both our culturing and sediment studies suggest that d13C_AA patterns in sediments will represent a novel proxy for understanding both primary production sources, and the direct bacterial role in the ultimate preservation of sedimentary organic matter.
语种英语
国家国际
学科大类气候变化
学科子类气候变化
文献类型数据集
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/215365
推荐引用方式
GB/T 7714
Larsen,Thomas. Amino acid 13C values of lab-cultured Thalassiosira weissflogii.2015-12-05.https://doi.org/10.1594/PANGAEA.869107.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Larsen]的文章
[Thomas]的文章
百度学术
百度学术中相似的文章
[Larsen]的文章
[Thomas]的文章
必应学术
必应学术中相似的文章
[Larsen]的文章
[Thomas]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。