CCPortal
Quantifying Iron Turnover in the Upper Ocean via Time-series Measurements at Station ALOHA
项目编号2022969
Nicholas Hawco
项目主持机构University of Hawaii
开始日期2020-09-01
结束日期08/31/2024
英文摘要Phytoplankton are the base of marine food webs but their ability to grow in the open ocean by photosynthesis is limited by the scarcity of key nutrients especially iron. To understand how phytoplankton respond to global environmental changes, it is essential to predict how the nutrient content of seawater will change as well. Iron is essential to the light-harvesting machinery of phytoplankton but is an extremely small fraction of seawater (1 part per billion) . Iron is much more abundant in soils and when dust storms blow these soils out to sea, the iron content of seawater increases. It is unknown how long the effects of these iron supply events last, which depends on how well the marine ecosystem can recover and reuse iron before it sinks to the seafloor. It is also unknown if human activities have added to the natural Fe supply. The proposed research will address these questions by conducting a 3 year time-series of iron measurements in the North Pacific Ocean. Here, dust supply from Asia occurs mainly during spring, allowing the loss of iron over the summer and fall months to be documented. Unique chemical signatures will be used to distinguish iron supply from the deposition of desert dust or from human sources. This record of the marine iron cycle will be important for validating ecosystem models that are used to predict how climate change will influence the growth of phytoplankton in the future. The research would make a scientific contribution to the Hawaii Ocean Time-Series, help improve biogeochemical iron models, student training at the graduate and undergraduate level, and support an early career scientist.

A 3 year time-series of iron (Fe) measurements is proposed to constrain the magnitude of external Fe input and Fe recycling in the open ocean. Near-monthly observations will be conducted in the North Pacific Subtropical Gyre onboard Hawaii Ocean Timeseries cruises, which receives regular dust input during springtime and is minimally influenced by deep mixing. Water column profiling of dissolved and particulate Fe concentrations – combined with the flux of Fe recorded in trace-metal-clean sediment traps – will define a residence time of Fe in the upper water column. Iron uptake rates will be quantified through short-term incubations using a novel stable isotope technique and will be used to derive a turnover time with respect to biological uptake. Finally, the isotopic composition of dissolved and particulate Fe in the mixed layer will be measured to evaluate the potential importance of anthropogenic and Hawaiian Fe sources, which are poorly constrained. Together, these measurements will define the tempo and variability of the open ocean Fe cycle and provide a means to validate models that simulate the biogeochemistry of this key micronutrient.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
资助机构US-NSF
项目经费$460,241.00
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/211887
推荐引用方式
GB/T 7714
Nicholas Hawco.Quantifying Iron Turnover in the Upper Ocean via Time-series Measurements at Station ALOHA.2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nicholas Hawco]的文章
百度学术
百度学术中相似的文章
[Nicholas Hawco]的文章
必应学术
必应学术中相似的文章
[Nicholas Hawco]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。