CCPortal
DOI10.1016/j.scib.2021.04.029
Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors
Zhao Q.; Avdeev M.; Chen L.; Shi S.
发表日期2021
ISSN20959273
起始页码1401
结束页码1408
卷号66期号:14
英文摘要Rational design of solid-state electrolytes (SSEs) with high ionic conductivity and low activation energy (Ea) is vital for all solid-state batteries. Machine learning (ML) techniques have recently been successful in predicting Li+ conduction property in SSEs with various descriptors and accelerating the development of SSEs. In this work, we extend the previous efforts and introduce a framework of ML prediction for Ea in SSEs with hierarchically encoding crystal structure-based (HECS) descriptors. Taking cubic Li-argyrodites as an example, an Ea prediction model is developed to the coefficient of determination (R2) and root-mean-square error (RMSE) values of 0.887 and 0.02 eV for training dataset, and 0.820 and 0.02 eV for test dataset, respectively by partial least squares (PLS) analysis, proving the prediction power of HECS-descriptors. The variable importance in projection (VIP) scores demonstrate the combined effects of the global and local Li+ conduction environments, especially the anion size and the resultant structural changes associated with anion site disorder. The developed Ea prediction model directs us to optimize and design new Li-argyrodites with lower Ea, such as Li6–xPS5–xCl1+x (<0.322 eV), Li6+xPS5+xBr1–x (<0.273 eV), Li6+xPS5+xBr0.25I0.75–x (<0.352 eV), Li6+(5–n)yP1–yNyS5I (<0.420 eV), Li6+(5–n)yAs1–yNyS5I (<0.371 eV), Li6+(5–n)yAs1–yNySe5I (<0.450 eV), by broadening bottleneck size, invoking site disorder and activating concerted Li+ conduction. This analysis shows great potential in promoting rational design of advanced SSEs and the same approach can be applied to other types of materials. © 2021 Science China Press
关键词Cubic Li-argyroditesHierarchically encoding crystal structure-based (HECS) descriptorsMachine learningPredicting activation energySolid-state electrolytes (SSEs)
英文关键词Activation energy; Crystal structure; Encoding (symbols); Forecasting; Ionic conduction in solids; Machine learning; Mean square error; Signal encoding; Solid state devices; Solid-State Batteries; X ray photoelectron spectroscopy; Crystals structures; Cubic li-argyrodite; Descriptors; Encodings; Hierarchically encoding crystal structure-based descriptor; Li$++$; Machine-learning; Predicting activation energy; Solid-state electrolyte; Solid electrolytes
语种英语
来源期刊Science Bulletin
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/207684
作者单位Materials Genome Institute, Shanghai University, Shanghai, 200444, China; Australian Nuclear Science and Technology Organization, New Illawarra Rd, Lucas HeightsNSW 2234, Australia; School of Chemistry, The University of Sydney, Sydney, 2006, Australia; Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China; School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
推荐引用方式
GB/T 7714
Zhao Q.,Avdeev M.,Chen L.,et al. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors[J],2021,66(14).
APA Zhao Q.,Avdeev M.,Chen L.,&Shi S..(2021).Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors.Science Bulletin,66(14).
MLA Zhao Q.,et al."Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors".Science Bulletin 66.14(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao Q.]的文章
[Avdeev M.]的文章
[Chen L.]的文章
百度学术
百度学术中相似的文章
[Zhao Q.]的文章
[Avdeev M.]的文章
[Chen L.]的文章
必应学术
必应学术中相似的文章
[Zhao Q.]的文章
[Avdeev M.]的文章
[Chen L.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。