Climate Change Data Portal
DOI | 10.1016/j.scib.2020.03.042 |
Inverse design of an integrated-nanophotonics optical neural network | |
Qu Y.; Zhu H.; Shen Y.; Zhang J.; Tao C.; Ghosh P.; Qiu M. | |
发表日期 | 2020 |
ISSN | 20959273 |
起始页码 | 1177 |
结束页码 | 1183 |
卷号 | 65期号:14 |
英文摘要 | Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore's Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint. The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error <10-4 and a mere 4 × 4 μm2 footprint. Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing “Kernel Matrix”, which can achieve 97.1% accuracy on the classic image classification dataset MNIST. © 2020 Science China Press |
关键词 | Deep learningIntegrated nanophotonicsInverse designOptical neural networksSilicon photonics |
英文关键词 | Classification (of information); Deep learning; Design; Image enhancement; Image recognition; Inverse problems; Learning algorithms; Light scattering; Low power electronics; Matrix algebra; Mean square error; Natural language processing systems; Network architecture; Neural networks; Stochastic systems; Electronic hardwares; Inverse design methods; Low-power consumption; Machine learning applications; NAtural language processing; Optical neural networks; Optical scattering; Stochastic matrices; Forward scattering |
语种 | 英语 |
来源期刊 | Science Bulletin
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/207165 |
作者单位 | Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China; State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States |
推荐引用方式 GB/T 7714 | Qu Y.,Zhu H.,Shen Y.,et al. Inverse design of an integrated-nanophotonics optical neural network[J],2020,65(14). |
APA | Qu Y..,Zhu H..,Shen Y..,Zhang J..,Tao C..,...&Qiu M..(2020).Inverse design of an integrated-nanophotonics optical neural network.Science Bulletin,65(14). |
MLA | Qu Y.,et al."Inverse design of an integrated-nanophotonics optical neural network".Science Bulletin 65.14(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Qu Y.]的文章 |
[Zhu H.]的文章 |
[Shen Y.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Qu Y.]的文章 |
[Zhu H.]的文章 |
[Shen Y.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Qu Y.]的文章 |
[Zhu H.]的文章 |
[Shen Y.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。