Climate Change Data Portal
| DOI | 10.1007/s11069-021-04597-w |
| Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network | |
| Yao Y.; Yang X.; Lai S.H.; Chin R.J. | |
| 发表日期 | 2021 |
| ISSN | 0921030X |
| 起始页码 | 601 |
| 结束页码 | 616 |
| 卷号 | 107期号:1 |
| 英文摘要 | Modeling of tsunami wave interaction with coral reefs to date focuses mainly on the process-based numerical models. In this study, an alternative machine learning technique based on the multi-layer perceptron neural network (MLP-NN) is introduced to predict the tsunami-like solitary wave run-up over fringing reefs. Two hydrodynamic forcings (incident wave height, reef-flat water level) and four reef morphologic features (reef width, fore-reef slope, beach slope, reef roughness) are selected as the input variables and wave run-up on the back-reef beach is assigned as the output variable. A validated numerical model based on the Boussinesq equations is applied to provide a dataset consisting of 4096 runs for MLP-NN training and testing. Results analyses show that the MLP-NN consisting of one hidden layer with ten hidden neurons provides the best predictions for the wave run-up. Subsequently, model performances in view of individual input variables are accessed via an analysis of the percentage errors of the predictions. Finally, a mean impact value analysis is also conducted to evaluate the relative importance of the input variables to the output variable. In general, the adopted MLP-NN has high predictive capability for wave run-up over the reef-lined coasts, and it is an alternative but more efficient tool for potential use in tsunami early warning system or risk assessment projects. © 2021, The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature. |
| 关键词 | Artificial neural networkCoral reefsolitary waveTsunami hazardWave run-up |
| 英文关键词 | artificial neural network; Boussinesq equation; coastal zone; coral reef; early warning system; fringing reef; hydrodynamic force; machine learning; nearshore dynamics; prediction; risk assessment; solitary wave; tsunami; wave height; wave runup |
| 语种 | 英语 |
| 来源期刊 | Natural Hazards
![]() |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/206689 |
| 作者单位 | School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; Department of Civil Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur, 50603, Malaysia; Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, Hunan 410114, China |
| 推荐引用方式 GB/T 7714 | Yao Y.,Yang X.,Lai S.H.,et al. Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network[J],2021,107(1). |
| APA | Yao Y.,Yang X.,Lai S.H.,&Chin R.J..(2021).Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network.Natural Hazards,107(1). |
| MLA | Yao Y.,et al."Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network".Natural Hazards 107.1(2021). |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Yao Y.]的文章 |
| [Yang X.]的文章 |
| [Lai S.H.]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Yao Y.]的文章 |
| [Yang X.]的文章 |
| [Lai S.H.]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Yao Y.]的文章 |
| [Yang X.]的文章 |
| [Lai S.H.]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。