Climate Change Data Portal
DOI | 10.1016/j.epsl.2020.116400 |
Ferromagnetic resonance of magnetite biominerals traces redox changes | |
Blattmann T.M.; Lesniak B.; García-Rubio I.; Charilaou M.; Wessels M.; Eglinton T.I.; Gehring A.U. | |
发表日期 | 2020 |
ISSN | 0012821X |
卷号 | 545 |
英文摘要 | Redox variations govern a multitude of key geochemical and microbiological processes within lacustrine and marine systems, yet the interpretation of these geological archives can be limited because redox-sensitive microorganisms leave behind sparse fossil evidence. Here, we assess a biologically controlled magnetic proxy through investigation of a well-constrained sedimentary record covering a perturbation of redox-conditions driven by a complete trophic cycle in Lake Constance. Ferromagnetic resonance spectroscopy of sediments reveals strong uniaxial anisotropy, indicative of single-domain magnetite particles in intact or fragmentary chain arrangements, which are an unambiguous trait of magnetotactic bacteria (MTB) and their magnetofossil remains. We show that biogenic magnetite formed intra-cellularly in MTB faithfully records changing redox-conditions at or close to the sediment water-interface. Biogenic magnetite within sedimentary records points to the proliferation of MTB parallel to a decline in water column dissolved oxygen and the formation of sulfidic surface sediments in Lake Constance associated with an episode of eutrophication (1955–1991). We conclude that magnetofossils may serve as a sensitive geological proxy to reconstruct dynamic redox-changes along the sediment-water interface and bottom waters. © 2020 The Authors |
关键词 | anoxiaeutrophicationmagnetofossilmagnetotactic bacteriaredox gradientsediment |
英文关键词 | Biochemical oxygen demand; Dissolved oxygen; Eutrophication; Ferromagnetic materials; Ferromagnetic resonance; Ferromagnetism; Lakes; Sedimentology; Sediments; Biogenic magnetite; Ferromagnetic resonance spectroscopy; Magnetite particles; Magnetotactic Bacteria; Microbiological process; Sediment water interface; Sedimentary records; Uniaxial anisotropy; Magnetite; depositional environment; ferromanganese deposit; lacustrine deposit; magnetite; redox conditions; trace element; trophic level; Bodensee; Bacteria (microorganisms) |
语种 | 英语 |
来源期刊 | Earth and Planetary Science Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/202498 |
作者单位 | Biogeochemistry Research Center, JAMSTEC, Yokosuka, 237-0061, Japan; Geological Institute, ETH Zurich, Zurich, 8092, Switzerland; Institute of Geophysics, ETH Zurich, Zurich, 8092, Switzerland; Laboratory of Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland; Centro Universitario de la Defensa, Zaragoza, 50090, Spain; Department of Physics, University of Louisiana at Lafayette, Lafayette, LA 70504, United States; Institut für Seenforschung, Landesanstalt für Umwelt Baden-Württemberg, Langenargen88085, Germany |
推荐引用方式 GB/T 7714 | Blattmann T.M.,Lesniak B.,García-Rubio I.,et al. Ferromagnetic resonance of magnetite biominerals traces redox changes[J],2020,545. |
APA | Blattmann T.M..,Lesniak B..,García-Rubio I..,Charilaou M..,Wessels M..,...&Gehring A.U..(2020).Ferromagnetic resonance of magnetite biominerals traces redox changes.Earth and Planetary Science Letters,545. |
MLA | Blattmann T.M.,et al."Ferromagnetic resonance of magnetite biominerals traces redox changes".Earth and Planetary Science Letters 545(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。