Climate Change Data Portal
DOI | 10.5194/tc-14-3349-2020 |
Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures | |
Yang K.; Sommers A.; Andrews L.C.; Smith L.C.; Lu X.; Fettweis X.; Li M. | |
发表日期 | 2020 |
ISSN | 19940416 |
起始页码 | 3349 |
结束页码 | 3365 |
卷号 | 14期号:10 |
英文摘要 | Each summer, large volumes of surface meltwater drain off the Greenland ice sheet (GrIS) surface through moulins to the bed, impacting subglacial hydrology and ice flow dynamics. Supraglacial surface routing delays may propagate to englacial and subglacial hydrologic systems, requiring accurate assessment to correctly estimate subglacial effective pressures. We compare hourly supraglacial moulin discharge simulations from three surface meltwater routing models - the synthetic unit hydrograph (SUH), the bareice component of surface routing and lake filling (SRLF), and the rescaled width function (RWF) - for four internally drained catchments on the southwestern Greenland ice sheet surface. The routing models are forced identically using surface runoff from the Modèle Atmosphérique Régionale regional climate model (RCM). For each catchment, simulated moulin hydrographs are input to the SHAKTI subglacial hydrologic model to simulate diurnally varying subglacial effective-pressure variations in the vicinity of a single moulin. Overall, all three routing models produce more realistic moulin discharges than simply using RCM runoff outputs without surface routing but produce significant differences in peak moulin discharge and time to peak. In particular, the RWF yields later, smaller peak moulin discharges than the SUH or SRLF due to its representation of slow interfluve flow between supraglacial meltwater channels, and it can readily accommodate the seasonal evolution of supraglacial stream and river networks. Differences among the three routing models are reflected in a series of simple idealized subglacial hydrology simulations that yield different diurnal effective-pressure amplitudes; however, the supraglacial hydrologic system acts as short-term storage for surface meltwater, and the temporal mean effective pressure is relatively consistent across routing models. © Author(s) 2020. |
英文关键词 | glacial hydrology; glacier advance; hydrography; meltwater; pressure field; river flow; subglacial environment; Arctic; Greenland; Greenland Ice Sheet |
语种 | 英语 |
来源期刊 | Cryosphere
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/202255 |
作者单位 | School of Geography and Ocean Science, Nanjing University, Nanjing, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing, China; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, United States; Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, United States; Institute at Brown for Environment and Society, Providence, RI, United States; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, United States; Department of Geography, University of Liège, Liège, Belgium |
推荐引用方式 GB/T 7714 | Yang K.,Sommers A.,Andrews L.C.,et al. Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures[J],2020,14(10). |
APA | Yang K..,Sommers A..,Andrews L.C..,Smith L.C..,Lu X..,...&Li M..(2020).Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures.Cryosphere,14(10). |
MLA | Yang K.,et al."Intercomparison of surface meltwater routing models for the Greenland ice sheet and influence on subglacial effective pressures".Cryosphere 14.10(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。