Climate Change Data Portal
DOI | 10.1039/d0ee02958k |
Predicting the photocurrent-composition dependence in organic solar cells | |
Rodríguez-Martínez X.; Pascual-San-José E.; Fei Z.; Heeney M.; Guimerà R.; Campoy-Quiles M. | |
发表日期 | 2021 |
ISSN | 17545692 |
起始页码 | 986 |
结束页码 | 994 |
卷号 | 14期号:2 |
英文摘要 | The continuous development of improved non-fullerene acceptors and deeper knowledge of the fundamental mechanisms governing performance underpin the vertiginous increase in efficiency witnessed by organic photovoltaics. While the influence of parameters like film thickness and morphology are generally understood, what determines the strong dependence of the photocurrent on the donor and acceptor fractions remains elusive. Here we approach this problem by training artificial intelligence algorithms with self-consistent datasets consisting of thousands of data points obtained by high-throughput evaluation methods. Two ensemble learning methods are implemented, namely a Bayesian machine scientist and a random decision forest. While the former demonstrates large descriptive power to complement the experimental high-throughput screening, the latter is found to predict with excellent accuracy the photocurrent-composition phase space for material systems outside the training set. Interestingly, we identify highly predictive models that only employ the materials band gaps, thus largely simplifying the rationale of the photocurrent-composition space. © The Royal Society of Chemistry. |
英文关键词 | Artificial intelligence; Energy gap; Learning systems; Organic solar cells; Phase space methods; Predictive analytics; Artificial intelligence algorithms; Composition dependence; Continuous development; Donor and acceptor; Fundamental mechanisms; High throughput screening; Organic photovoltaics; Strong dependences; Photocurrents; accuracy assessment; detection method; efficiency measurement; energy efficiency; fuel cell; model; perforation; performance assessment |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190771 |
作者单位 | Institut de Ciència de Materials de Barcelona, ICMAB-CSIC Campus Uab, Bellaterra, 08193, Spain; Department of Chemistry and Centre for Plastic Electronics, White City Campus, Imperial College London, London, W12 0BZ, United Kingdom; Institució Catalana de Recerca i Estudis Avançats, Icrea, Passeig de Lluís Companys 23, Barcelona, 08010, Spain; Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain |
推荐引用方式 GB/T 7714 | Rodríguez-Martínez X.,Pascual-San-José E.,Fei Z.,et al. Predicting the photocurrent-composition dependence in organic solar cells[J],2021,14(2). |
APA | Rodríguez-Martínez X.,Pascual-San-José E.,Fei Z.,Heeney M.,Guimerà R.,&Campoy-Quiles M..(2021).Predicting the photocurrent-composition dependence in organic solar cells.Energy & Environmental Science,14(2). |
MLA | Rodríguez-Martínez X.,et al."Predicting the photocurrent-composition dependence in organic solar cells".Energy & Environmental Science 14.2(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。