Climate Change Data Portal
DOI | 10.1039/d0ee03839c |
22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap | |
Alsalloum A.Y.; Turedi B.; Almasabi K.; Zheng X.; Naphade R.; Stranks S.D.; Mohammed O.F.; Bakr O.M. | |
发表日期 | 2021 |
ISSN | 17545692 |
起始页码 | 2263 |
结束页码 | 2268 |
卷号 | 14期号:4 |
英文摘要 | Expanding the near-infrared (NIR) response of perovskite materials to approach the ideal bandgap range (1.1-1.4 eV) for single-junction solar cells is an attractive step to unleash the full potential of perovskite solar cells (PSCs). However, polycrystalline formamidinium lead triiodide (FAPbI3)-based absorbers, used in record-efficiency PSCs, currently offer the smallest bandgap that can be achieved for lead-halide perovskite thin films (>100 meV larger than the optimal bandgap). Here, we uncover that utilizing a mixed-cation single-crystal absorber layer (FA0.6MA0.4PbI3) is capable of redshifting the external quantum efficiency (EQE) band edge past that of FAPbI3 polycrystalline solar cells by about 50 meV-only 60 meV larger than that of the top-performing photovoltaic material, GaAs-leading to EQE-verified short-circuit current densities exceeding 26 mA cm-2 without sacrificing the open-circuit voltage (VOC), and therefore, yielding power conversion efficiencies of up to 22.8%. These figures of merit not only set a new record for SC-PSCs and are among the highest reported for inverted-structured-PSCs, but also offer an avenue for lead halide PSCs to advance their performance toward their theoretical Shockley-Queisser Limit potential. This journal is © The Royal Society of Chemistry. |
英文关键词 | Efficiency; Energy gap; Gallium arsenide; III-V semiconductors; Infrared devices; Lead compounds; Open circuit voltage; Perovskite; Positive ions; Single crystals; External quantum efficiency; Halide perovskites; Photovoltaic materials; Polycrystalline solar cells; Power conversion efficiencies; Record efficiencies; Shockley-queisser limits; Single junction solar cells; Perovskite solar cells; cation; crystal; fuel cell; perovskite; solar power |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190693 |
作者单位 | Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom |
推荐引用方式 GB/T 7714 | Alsalloum A.Y.,Turedi B.,Almasabi K.,et al. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap[J],2021,14(4). |
APA | Alsalloum A.Y..,Turedi B..,Almasabi K..,Zheng X..,Naphade R..,...&Bakr O.M..(2021).22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap.Energy & Environmental Science,14(4). |
MLA | Alsalloum A.Y.,et al."22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap".Energy & Environmental Science 14.4(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。