CCPortal
DOI10.1039/d1ee00559f
Accelerating organic solar cell material's discovery: high-throughput screening andbig data
Rodríguez-Martínez X.; Pascual-San-José E.; Campoy-Quiles M.
发表日期2021
ISSN17545692
起始页码3301
结束页码3322
卷号14期号:6
英文摘要The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology. As a result, high-throughput experimental and computational methodologies are fostered to leverage their inherently high exploratory paces and accelerate novel materials discovery. In this review, we present some of the computational (pre)screening approaches performed prior to experimentation to select the most promising molecular candidates from the available materials libraries or, alternatively, generate molecules beyond human intuition. Then, we outline the main high-throuhgput experimental screening and characterization approaches with application in organic solar cells, namely those based on lateral parametric gradients (measuring-intensive) and on automated device prototyping (fabrication-intensive). In both cases, experimental datasets are generated at unbeatable paces, which notably enhancebig datareadiness. Herein, machine-learning algorithms find a rewarding application niche to retrieve quantitative structure-activity relationships and extract molecular design rationale, which are expected to keep the material's discovery pace up in organic photovoltaics. © The Royal Society of Chemistry 2021.
英文关键词Energy gap; Learning algorithms; Machine learning; Molecular graphics; Organic polymers; Photovoltaic cells; Computational methodology; High throughput screening; Molecular candidates; Organic photovoltaic materials; Organic photovoltaics; Quantitative structure activity relationship; Screening approaches; Solar cell materials; Organic solar cells; automation; computer simulation; design; experimental study; fuel cell; machine learning; molecular analysis; photovoltaic system
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/190635
作者单位Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
推荐引用方式
GB/T 7714
Rodríguez-Martínez X.,Pascual-San-José E.,Campoy-Quiles M.. Accelerating organic solar cell material's discovery: high-throughput screening andbig data[J],2021,14(6).
APA Rodríguez-Martínez X.,Pascual-San-José E.,&Campoy-Quiles M..(2021).Accelerating organic solar cell material's discovery: high-throughput screening andbig data.Energy & Environmental Science,14(6).
MLA Rodríguez-Martínez X.,et al."Accelerating organic solar cell material's discovery: high-throughput screening andbig data".Energy & Environmental Science 14.6(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rodríguez-Martínez X.]的文章
[Pascual-San-José E.]的文章
[Campoy-Quiles M.]的文章
百度学术
百度学术中相似的文章
[Rodríguez-Martínez X.]的文章
[Pascual-San-José E.]的文章
[Campoy-Quiles M.]的文章
必应学术
必应学术中相似的文章
[Rodríguez-Martínez X.]的文章
[Pascual-San-José E.]的文章
[Campoy-Quiles M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。