Climate Change Data Portal
DOI | 10.1039/c7ee00286f |
The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates | |
Haschke J.; Seif J.P.; Riesen Y.; Tomasi A.; Cattin J.; Tous L.; Choulat P.; Aleman M.; Cornagliotti E.; Uruena A.; Russell R.; Duerinckx F.; Champliaud J.; Levrat J.; Abdallah A.A.; Aïssa B.; Tabet N.; Wyrsch N.; Despeisse M.; Szlufcik J.; De Wolf S.; Ballif C. | |
发表日期 | 2017 |
ISSN | 17545692 |
起始页码 | 1196 |
结束页码 | 1206 |
卷号 | 10期号:5 |
英文摘要 | Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio. © 2017 The Royal Society of Chemistry. |
英文关键词 | Climatology; Electric resistance; Heterojunctions; Open circuit voltage; Passivation; Silicon; Solar cells; Back surface fields; Cell interconnection; Electrical parameter; High efficiency silicon solar cells; Load resistance ratio; Measured temperatures; Optimal applications; Silicon heterojunctions; Silicon solar cells; climate conditions; electrical conductivity; energy efficiency; fuel cell; irradiance; optimization; parameterization; performance assessment; silicon |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190557 |
作者单位 | Ecole Polytechnique Fédérale de Lausanne, Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory (PV-lab), Rue de la Maladière 71B, Neuchâtel, CH-2002, Switzerland; Interuniversity Microelectronics Center (Imec), Kapeldreef 75, Leuven, BE-3001, Belgium; Swiss Center for Electronics and Microtechnology (CSEM), PV-center, Rue Jaquet Droz 1, Neuchâtel, CH-2002, Switzerland; Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia |
推荐引用方式 GB/T 7714 | Haschke J.,Seif J.P.,Riesen Y.,et al. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates[J],2017,10(5). |
APA | Haschke J..,Seif J.P..,Riesen Y..,Tomasi A..,Cattin J..,...&Ballif C..(2017).The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates.Energy & Environmental Science,10(5). |
MLA | Haschke J.,et al."The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates".Energy & Environmental Science 10.5(2017). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。