Climate Change Data Portal
DOI | 10.1039/c7ee03420b |
Solar PV output prediction from video streams using convolutional neural networks | |
Sun Y.; Szucs G.; Brandt A.R. | |
发表日期 | 2018 |
ISSN | 17545692 |
起始页码 | 1811 |
结束页码 | 1818 |
卷号 | 11期号:7 |
英文摘要 | Solar photovoltaic (PV) installation is growing rapidly across the world, but the variability of solar power hinders its further penetration into the power grid. Part of the short-term variability stems from sudden changes in meteorological conditions, i.e., change in cloud coverage, which can vary PV output significantly over timescales of minutes. Images of the sky provide information on current and future cloud coverage, and are potentially useful in inferring PV generation. This work uses convolutional neural networks (CNN) to correlate PV output to contemporaneous images of the sky (a "now-cast"). The CNN achieves test-set relative-root-mean-square error values (rRMSE) of 26.0% to 30.2% when applied to power outputs from two solar PV systems. We explore the sensitivity of model accuracy to a variety of CNN structures, with different widths, depths, and input image resolutions among other hyper-parameters. This success at "now-cast" prediction points to possible future uses for short-term forecasts. © 2018 The Royal Society of Chemistry. |
英文关键词 | Convolution; Electric power transmission networks; Forecasting; Image resolution; Mean square error; Neural networks; Photovoltaic cells; Solar energy; Video streaming; Convolutional neural network; Convolutional Neural Networks (CNN); Meteorological condition; Possible futures; Root mean square errors; Short-term forecasts; Solar photovoltaics; Solar PV systems; Solar power generation; accuracy assessment; climate conditions; error analysis; installation; parameterization; photovoltaic system; prediction; smart grid; solar power; videography |
语种 | 英语 |
来源期刊 | Energy & Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190193 |
作者单位 | Department of Energy Resources Engineering, Stanford UniversityCA, United States; Department of Mathematics, Stanford UniversityCA, United States |
推荐引用方式 GB/T 7714 | Sun Y.,Szucs G.,Brandt A.R.. Solar PV output prediction from video streams using convolutional neural networks[J],2018,11(7). |
APA | Sun Y.,Szucs G.,&Brandt A.R..(2018).Solar PV output prediction from video streams using convolutional neural networks.Energy & Environmental Science,11(7). |
MLA | Sun Y.,et al."Solar PV output prediction from video streams using convolutional neural networks".Energy & Environmental Science 11.7(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。