CCPortal
DOI10.1039/c7ee03420b
Solar PV output prediction from video streams using convolutional neural networks
Sun Y.; Szucs G.; Brandt A.R.
发表日期2018
ISSN17545692
起始页码1811
结束页码1818
卷号11期号:7
英文摘要Solar photovoltaic (PV) installation is growing rapidly across the world, but the variability of solar power hinders its further penetration into the power grid. Part of the short-term variability stems from sudden changes in meteorological conditions, i.e., change in cloud coverage, which can vary PV output significantly over timescales of minutes. Images of the sky provide information on current and future cloud coverage, and are potentially useful in inferring PV generation. This work uses convolutional neural networks (CNN) to correlate PV output to contemporaneous images of the sky (a "now-cast"). The CNN achieves test-set relative-root-mean-square error values (rRMSE) of 26.0% to 30.2% when applied to power outputs from two solar PV systems. We explore the sensitivity of model accuracy to a variety of CNN structures, with different widths, depths, and input image resolutions among other hyper-parameters. This success at "now-cast" prediction points to possible future uses for short-term forecasts. © 2018 The Royal Society of Chemistry.
英文关键词Convolution; Electric power transmission networks; Forecasting; Image resolution; Mean square error; Neural networks; Photovoltaic cells; Solar energy; Video streaming; Convolutional neural network; Convolutional Neural Networks (CNN); Meteorological condition; Possible futures; Root mean square errors; Short-term forecasts; Solar photovoltaics; Solar PV systems; Solar power generation; accuracy assessment; climate conditions; error analysis; installation; parameterization; photovoltaic system; prediction; smart grid; solar power; videography
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/190193
作者单位Department of Energy Resources Engineering, Stanford UniversityCA, United States; Department of Mathematics, Stanford UniversityCA, United States
推荐引用方式
GB/T 7714
Sun Y.,Szucs G.,Brandt A.R.. Solar PV output prediction from video streams using convolutional neural networks[J],2018,11(7).
APA Sun Y.,Szucs G.,&Brandt A.R..(2018).Solar PV output prediction from video streams using convolutional neural networks.Energy & Environmental Science,11(7).
MLA Sun Y.,et al."Solar PV output prediction from video streams using convolutional neural networks".Energy & Environmental Science 11.7(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun Y.]的文章
[Szucs G.]的文章
[Brandt A.R.]的文章
百度学术
百度学术中相似的文章
[Sun Y.]的文章
[Szucs G.]的文章
[Brandt A.R.]的文章
必应学术
必应学术中相似的文章
[Sun Y.]的文章
[Szucs G.]的文章
[Brandt A.R.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。