Climate Change Data Portal
DOI | 10.1039/c8ee01244j |
Solar thermal-driven capacitance enhancement of supercapacitors | |
Yi F.; Ren H.; Dai K.; Wang X.; Han Y.; Wang K.; Li K.; Guan B.; Wang J.; Tang M.; Shan J.; Yang H.; Zheng M.; You Z.; Wei D.; Liu Z. | |
发表日期 | 2018 |
ISSN | 17545692 |
起始页码 | 2016 |
结束页码 | 2024 |
卷号 | 11期号:8 |
英文摘要 | Solar energy is a renewable and abundant energy source that has myriad potential applications to be tapped. Energy storage devices often present diminishing performance at lower temperatures, and sometimes they even fail during cold weather; therefore, a renewable technology to spur such sluggish performance not only is important for a sustainable future but also may inspire new-concept devices such as ignition sensors. Here, under solar illumination, the capacitance, energy density and power density of supercapacitors are all largely enhanced owing to the photothermal effect. The supercapacitors employ three-dimensional hierarchical graphene as the electrodes, and show an absorption of >92.88% over the entire solar spectrum, a response time of <200 s, and a surface temperature change of ∼39 °C under 1 solar illumination (1 kW m-2). Under 1 solar illumination, the capacitance of the pseudocapacitor increases by ∼1.5 times, and the capacitance of the electric double-layer capacitor increases by ∼3.7 times. The mechanism is quantitatively analyzed and discussed. This work provides new insights into the applications of solar energy and offers new design options for the development of energy storage devices. © 2018 The Royal Society of Chemistry. |
英文关键词 | Absorption spectroscopy; Capacitance; Energy storage; Solar energy; Capacitance enhancement; Energy density; Lower temperatures; Photothermal effects; Power densities; Renewable technology; Solar illumination; Surface temperature changes; Supercapacitor; absorption efficiency; energy resource; energy storage; performance assessment; solar power; temperature effect; three-dimensional modeling |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/190154 |
作者单位 | Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Department of Precision Instrument, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China; Beijing Graphene Institute, Beijing, 100095, China; Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Electronic Science and Technology, Faculty of Information Technology, Beijing University of Technology, Beijing, 100022, China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100083, China; College of Biological and Chemical Engineering, University of Science and Technology Beijing, Beijing, 100083, China |
推荐引用方式 GB/T 7714 | Yi F.,Ren H.,Dai K.,et al. Solar thermal-driven capacitance enhancement of supercapacitors[J],2018,11(8). |
APA | Yi F..,Ren H..,Dai K..,Wang X..,Han Y..,...&Liu Z..(2018).Solar thermal-driven capacitance enhancement of supercapacitors.Energy & Environmental Science,11(8). |
MLA | Yi F.,et al."Solar thermal-driven capacitance enhancement of supercapacitors".Energy & Environmental Science 11.8(2018). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yi F.]的文章 |
[Ren H.]的文章 |
[Dai K.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yi F.]的文章 |
[Ren H.]的文章 |
[Dai K.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yi F.]的文章 |
[Ren H.]的文章 |
[Dai K.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。