CCPortal
DOI10.1039/c8ee01799a
Nacre-inspired crystallization and elastic "brick-and-mortar" structure for a wearable perovskite solar module
Hu X.; Huang Z.; Li F.; Su M.; Huang Z.; Zhao Z.; Cai Z.; Yang X.; Meng X.; Li P.; Wang Y.; Li M.; Chen Y.; Song Y.
发表日期2019
ISSN17545692
起始页码979
结束页码987
卷号12期号:3
英文摘要Perovskite solar cells (PSCs) are promising candidates for power sources to sustainably drive next-generation wearable electronics, following the advances in PSCs and future desires of harvesting and storing energy integration. However, the natural brittle property of crystals for elastic deformation restricts the mechanical robustness, which definitely results in degraded efficiency. In fact, the crystalline quality and "cask effect" impact large-area reproducibility of PSCs. Inspired by the highly crystalline and tough nacre, herein, we report biomimetic crystallization to grow high-quality perovskite films with an elastic "brick-and-mortar" structure. The antithetic solubility of the composite matrix facilitates perpendicular micro-parallel crystallization and affords stretchability to resolve the "cask effect" of flexible PSCs. We successfully fabricate PSC chips (1 cm2 area) with average efficiencies of 19.59% and 15.01% on glass and stretchable substrates, respectively. Importantly, a recorded 56.02 cm2 area wearable solar-power source with 7.91% certified conversion efficiency is achieved. This skin fitting power source shows bendability, stretchability and twistability and is practically assembled in wearable electronics. © 2019 The Royal Society of Chemistry.
英文关键词Biomimetics; Brick; Crystalline materials; Gems; Mortar; Perovskite; Perovskite solar cells; Solar cells; Solar energy; Average efficiencies; Composite matrices; Crystalline quality; Energy integration; Mechanical robustness; Perovskite films; Power sources; Reproducibilities; Wearable technology; composite; efficiency measurement; electronic equipment; energy efficiency; fuel cell; integrated approach; perovskite; solar power
语种英语
来源期刊Energy & Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/189960
作者单位Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Chemistry, Institute of Polymers, Nanchang University, Nanchang, 330031, China
推荐引用方式
GB/T 7714
Hu X.,Huang Z.,Li F.,et al. Nacre-inspired crystallization and elastic "brick-and-mortar" structure for a wearable perovskite solar module[J],2019,12(3).
APA Hu X..,Huang Z..,Li F..,Su M..,Huang Z..,...&Song Y..(2019).Nacre-inspired crystallization and elastic "brick-and-mortar" structure for a wearable perovskite solar module.Energy & Environmental Science,12(3).
MLA Hu X.,et al."Nacre-inspired crystallization and elastic "brick-and-mortar" structure for a wearable perovskite solar module".Energy & Environmental Science 12.3(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu X.]的文章
[Huang Z.]的文章
[Li F.]的文章
百度学术
百度学术中相似的文章
[Hu X.]的文章
[Huang Z.]的文章
[Li F.]的文章
必应学术
必应学术中相似的文章
[Hu X.]的文章
[Huang Z.]的文章
[Li F.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。