Climate Change Data Portal
DOI | 10.1039/c9ee03219c |
Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability | |
Zheng S.; Huang H.; Dong Y.; Wang S.; Zhou F.; Qin J.; Sun C.; Yu Y.; Wu Z.-S.; Bao X. | |
发表日期 | 2020 |
ISSN | 17545692 |
起始页码 | 821 |
结束页码 | 829 |
卷号 | 13期号:3 |
英文摘要 | The rapid development of microelectronics and microsystems has stimulated the continuous evolution of high-performance and cost-effective micro-batteries. Despite their competitiveness with huge application potential, sodium ion micro-batteries (NIMBs) are still underdeveloped. Herein, we demonstrate one prototype of a quasi-solid-state planar ionogel-based NIMB constructed by separator-free interdigital microelectrodes of sodium titanate anode and sodium vanadate phosphate cathode, both of which are embedded into a three-dimensional interconnected graphene scaffold. Meanwhile, a novel NaBF4-based ionogel electrolyte with robust ionic conductivity of 8.1 mS cm-1 was used. Benefiting from the synergetic merits from the planar architecture, dominant pseudocapacitance contribution, and 3D multi-directional Na-ion diffusion mechanism, the as-assembled NIMBs exhibit high volumetric capacity of 30.7 mA h cm-3 at 1C, and high rate performance with 15.7 mA h cm-3 at 30C at room temperature and 13.5 mA h cm-3 at 100C at a high temperature of 100 °C. Moreover, the quasi-solid-state NIMBs present outstanding flexibility, tunable voltage and capacity output, and remarkable areal energy density of 145 μW h cm-2 (55.6 mW h cm-3). Therefore, this work will provide numerous chances to construct planar NIMBs for microsystems. © 2020 The Royal Society of Chemistry. |
英文关键词 | Cost effectiveness; Electrolytes; Metal ions; Microelectrodes; Microelectronics; Microsystems; Miniature batteries; Scaffolds; Sodium compounds; High temperature; High-rate performance; Microelectronics and microsystems; Planar architecture; Pseudocapacitance; Quasi-solid state; Sodium titanates; Volumetric capacity; Sodium-ion batteries; diffusion; electrode; electrolyte; fuel cell; high temperature; sodium |
语种 | 英语 |
来源期刊 | Energy & Environmental Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/189688 |
作者单位 | Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China; State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China; University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China; Hefei National Laboratory for Physical Sciences, Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei Anhui, 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei Anhui, 230026, China |
推荐引用方式 GB/T 7714 | Zheng S.,Huang H.,Dong Y.,et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability[J],2020,13(3). |
APA | Zheng S..,Huang H..,Dong Y..,Wang S..,Zhou F..,...&Bao X..(2020).Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability.Energy & Environmental Science,13(3). |
MLA | Zheng S.,et al."Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability".Energy & Environmental Science 13.3(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zheng S.]的文章 |
[Huang H.]的文章 |
[Dong Y.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zheng S.]的文章 |
[Huang H.]的文章 |
[Dong Y.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zheng S.]的文章 |
[Huang H.]的文章 |
[Dong Y.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。