Climate Change Data Portal
DOI | 10.1029/2020JC016917 |
Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model | |
Wang X.; Verlaan M.; Apecechea M.I.; Lin H.X. | |
发表日期 | 2021 |
ISSN | 21699275 |
卷号 | 126期号:3 |
英文摘要 | In this study, a computation-efficient parameter estimation scheme for high-resolution global tide models is developed. The method is applied to Global Tide and Surge Model with an unstructured grid with a resolution of about 2.5 km in the coastal area and about 4.9 million cells. The estimation algorithm uses an iterative least squares method, known as DUD. We use time-series derived from the FES2014 tidal database in deep water as observations to estimate corrections to the bathymetry. Although the model and estimation algorithm run in parallel, directly applying of DUD would not be affordable computationally. To reduce the computational demand, a coarse-to-fine strategy is proposed by using output from a coarser model to replace the fine model. There are two approaches; One is completely replacing the fine model with a coarser model during calibration (Coarse Calibration) and the second is Coarse Incremental Calibration, that replaces the output increments between the initial model and model with modified parameters by coarser grid model simulations. To further reduce the computation time, the parameter dimension is reduced from O(106) to O(102) based on sensitivity analysis, which greatly reduces the required number of model simulations and storage. In combination, these methods form an efficient optimization strategy. Experiments show that the accuracy of the tidal representation can be improved significantly at affordable cost. Validation for other time-periods and using coastal tide-gauges shows that the accuracy is improved significantly. However, the calibration period of two weeks is short and leads to some over-fitting of the model. © 2021. The Authors. |
英文关键词 | bathymetry calibration and validation; coarse-to-fine strategy; computational time reduction; global parameter estimation; global tide and surge model; sensitivity analysis |
语种 | 英语 |
来源期刊 | Journal of Geophysical Research: Oceans
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/186427 |
作者单位 | Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands; Deltares, Delft, Netherlands |
推荐引用方式 GB/T 7714 | Wang X.,Verlaan M.,Apecechea M.I.,et al. Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model[J],2021,126(3). |
APA | Wang X.,Verlaan M.,Apecechea M.I.,&Lin H.X..(2021).Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model.Journal of Geophysical Research: Oceans,126(3). |
MLA | Wang X.,et al."Computation-Efficient Parameter Estimation for a High-Resolution Global Tide and Surge Model".Journal of Geophysical Research: Oceans 126.3(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。