CCPortal
DOI10.1029/2019JD031551
Detection of Non-Gaussian Behavior Using Machine Learning Techniques: A Case Study on the Lorenz 63 Model
Goodliff M.; Fletcher S.; Kliewer A.; Forsythe J.; Jones A.
发表日期2020
ISSN2169897X
卷号125期号:2
英文摘要An important assumption made in most variational, ensemble, and hybrid-based data assimilation systems is that all minimized errors are Gaussian random variables. A theory developed at the Cooperative Institute for Research in the Atmosphere enables for the Gaussian assumption for the different types of errors to be relaxed to a lognormally distributed random variable. While this is a first step toward using more consistent distributions to model the errors involved in numerical weather/ocean prediction, we still need to be able to identify when we need to assign a lognormal distribution in a mixed Gaussian-lognormal approach. In this paper, we present some machine learning techniques and experiments with the Lorenz 63 model. Using these machine learning techniques, we show detection of non-Gaussian distributions can be done using two methods: a support vector machine and a neural network. This is done by training past data to classify (1) differences with the distribution statistics (means and modes) and (2) the skewness of the probability density function. © 2019. American Geophysical Union. All Rights Reserved.
英文关键词atmospheric flows; Lorenz 63 model; machine learning; neural network; non-Gaussianity; support vector machine
语种英语
来源期刊Journal of Geophysical Research: Atmospheres
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/186224
作者单位Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, United States
推荐引用方式
GB/T 7714
Goodliff M.,Fletcher S.,Kliewer A.,et al. Detection of Non-Gaussian Behavior Using Machine Learning Techniques: A Case Study on the Lorenz 63 Model[J],2020,125(2).
APA Goodliff M.,Fletcher S.,Kliewer A.,Forsythe J.,&Jones A..(2020).Detection of Non-Gaussian Behavior Using Machine Learning Techniques: A Case Study on the Lorenz 63 Model.Journal of Geophysical Research: Atmospheres,125(2).
MLA Goodliff M.,et al."Detection of Non-Gaussian Behavior Using Machine Learning Techniques: A Case Study on the Lorenz 63 Model".Journal of Geophysical Research: Atmospheres 125.2(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Goodliff M.]的文章
[Fletcher S.]的文章
[Kliewer A.]的文章
百度学术
百度学术中相似的文章
[Goodliff M.]的文章
[Fletcher S.]的文章
[Kliewer A.]的文章
必应学术
必应学术中相似的文章
[Goodliff M.]的文章
[Fletcher S.]的文章
[Kliewer A.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。