CCPortal
DOI10.1007/s00382-021-05821-w
Exploiting large ensembles for a better yet simpler climate model evaluation
Suarez-Gutierrez L.; Milinski S.; Maher N.
发表日期2021
ISSN0930-7575
起始页码45
结束页码64
英文摘要We use a methodological framework exploiting the power of large ensembles to evaluate how well ten coupled climate models represent the internal variability and response to external forcings in observed historical surface temperatures. This evaluation framework allows us to directly attribute discrepancies between models and observations to biases in the simulated internal variability or forced response, without relying on assumptions to separate these signals in observations. The largest discrepancies result from the overestimated forced warming in some models during recent decades. In contrast, models do not systematically over- or underestimate internal variability in global mean temperature. On regional scales, all models misrepresent surface temperature variability over the Southern Ocean, while overestimating variability over land-surface areas, such as the Amazon and South Asia, and high-latitude oceans. Our evaluation shows that MPI-GE, followed by GFDL-ESM2M and CESM-LE offer the best global and regional representation of both the internal variability and forced response in observed historical temperatures. © 2021, The Author(s).
英文关键词Climate model evaluation; Climate models; Forced response; Internal variability; Large ensembles; SMILEs; Surface temperatures
来源期刊Climate Dynamics
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/183435
作者单位Max-Planck-Institut für Meteorologie, Hamburg, 20146, Germany
推荐引用方式
GB/T 7714
Suarez-Gutierrez L.,Milinski S.,Maher N.. Exploiting large ensembles for a better yet simpler climate model evaluation[J],2021.
APA Suarez-Gutierrez L.,Milinski S.,&Maher N..(2021).Exploiting large ensembles for a better yet simpler climate model evaluation.Climate Dynamics.
MLA Suarez-Gutierrez L.,et al."Exploiting large ensembles for a better yet simpler climate model evaluation".Climate Dynamics (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Suarez-Gutierrez L.]的文章
[Milinski S.]的文章
[Maher N.]的文章
百度学术
百度学术中相似的文章
[Suarez-Gutierrez L.]的文章
[Milinski S.]的文章
[Maher N.]的文章
必应学术
必应学术中相似的文章
[Suarez-Gutierrez L.]的文章
[Milinski S.]的文章
[Maher N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。