Climate Change Data Portal
DOI | 10.1007/s00382-020-05558-y |
Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model | |
Caillaud C.; Somot S.; Alias A.; Bernard-Bouissières I.; Fumière Q.; Laurantin O.; Seity Y.; Ducrocq V. | |
发表日期 | 2021 |
ISSN | 0930-7575 |
卷号 | 56期号:2021-05-06 |
英文摘要 | Modelling the rare but high-impact Mediterranean Heavy Precipitation Events (HPEs) at climate scale remains a largely open scientific challenge. The issue is adressed here by running a 38-year-long continuous simulation of the CNRM-AROME Convection-Permitting Regional Climate Model (CP-RCM) at a 2.5 km horizontal resolution and over a large pan-Alpine domain. First, the simulation is evaluated through a basic Eulerian statistical approach via a comparison with selected high spatial and temporal resolution observational datasets. Northwestern Mediterranean fall extreme precipitation is correctly represented by CNRM-AROME at a daily scale and even better at an hourly scale, in terms of location, intensity, frequency and interannual variability, despite an underestimation of daily and hourly highest intensities above 200 mm/day and 40 mm/h, respectively. A comparison of the CP-RCM with its forcing convection-parameterised 12.5 km Regional Climate Model (RCM) demonstrates a clear added value for the CP-RCM, confirming previous studies. Secondly, an object-oriented Lagrangian approach is proposed with the implementation of a precipitating system detection and tracking algorithm, applied to the model and the reference COMEPHORE precipitation dataset for twenty fall seasons. Using French Mediterranean HPEs as objects, CNRM-AROME’s ability to represent the main characteristics of fall convective systems and tracks is highlighted in terms of number, intensity, area, duration, velocity and severity. Further, the model is able to simulate long-lasting and severe extreme fall events similar to observations. However, it fails to reproduce the precipitating systems and tracks with the highest intensities (maximum intensities above 40 mm/h) well, and the model’s tendency to overestimate the cell size increases with intensity. © 2021, The Author(s). |
英文关键词 | CNRM-AROME; COMEPHORE; Convection-Permitting Regional Climate Model; Heavy Precipitation Events; Mediterranean; Object-oriented; Tracking |
来源期刊 | Climate Dynamics
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/183355 |
作者单位 | CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; DIROP/PI, Météo-France, Toulouse, France; Engie, Brussels, Belgium; DSO, Météo-France, Toulouse, France |
推荐引用方式 GB/T 7714 | Caillaud C.,Somot S.,Alias A.,et al. Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model[J],2021,56(2021-05-06). |
APA | Caillaud C..,Somot S..,Alias A..,Bernard-Bouissières I..,Fumière Q..,...&Ducrocq V..(2021).Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model.Climate Dynamics,56(2021-05-06). |
MLA | Caillaud C.,et al."Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model".Climate Dynamics 56.2021-05-06(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。