Climate Change Data Portal
DOI | 10.1073/PNAS.2020205118 |
Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution | |
Monroe J.I.; Jiao S.; Davis R.J.; Brown D.R.; Katz L.E.; Shell M.S. | |
发表日期 | 2021 |
ISSN | 00278424 |
卷号 | 118期号:1 |
英文摘要 | Performance of membranes for water purification is highly influenced by the interactions of solvated species with membrane surfaces, including surface adsorption of solutes upon fouling. Current efforts toward fouling-resistant membranes often pursue surface hydrophilization, frequently motivated by macroscopic measures of hydrophilicity, because hydrophobicity is thought to increase solute–surface affinity. While this heuristic has driven diverse membrane functionalization strategies, here we build on advances in the theory of hydrophobicity to critically examine the relevance of macroscopic characterizations of solute–surface affinity. Specifically, we use molecular simulations to quantify the affinities to model hydroxyl- and methyl-functionalized surfaces of small, chemically diverse, charge-neutral solutes represented in produced water. We show that surface affinities correlate poorly with two conventional measures of solute hydrophobicity, gas-phase water solubility and oil–water partitioning. Moreover, we find that all solutes show attraction to the hydrophobic surface and most to the hydrophilic one, in contrast to macroscopically based hydrophobicity heuristics. We explain these results by decomposing affinities into direct solute interaction energies (which dominate on hydroxyl surfaces) and water restructuring penalties (which dominate on methyl surfaces). Finally, we use an inverse design algorithm to show how heterogeneous surfaces, with multiple functional groups, can be patterned to manipulate solute affinity and selectivity. These findings, importantly based on a range of solute and surface chemistries, illustrate that conventional macroscopic hydrophobicity metrics can fail to predict solute–surface affinity, and that molecular-scale surface chemical patterning significantly influences affinity—suggesting design opportunities for water purification membranes and other engineered interfaces involving aqueous solute–surface interactions. © 2021 National Academy of Sciences. All rights reserved. |
英文关键词 | Inverse design; Membrane fouling; Molecular simulation; Solvation free energy; Surface adsorption |
语种 | 英语 |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/181127 |
作者单位 | Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States; Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States |
推荐引用方式 GB/T 7714 | Monroe J.I.,Jiao S.,Davis R.J.,et al. Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution[J],2021,118(1). |
APA | Monroe J.I.,Jiao S.,Davis R.J.,Brown D.R.,Katz L.E.,&Shell M.S..(2021).Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution.Proceedings of the National Academy of Sciences of the United States of America,118(1). |
MLA | Monroe J.I.,et al."Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution".Proceedings of the National Academy of Sciences of the United States of America 118.1(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。