CCPortal
DOI10.1073/pnas.2016191118
Stable reliability diagrams for probabilistic classifiers
Dimitriadis T.; Gneiting T.; Jordan A.I.
发表日期2021
ISSN00278424
卷号118期号:8
英文摘要A probability forecast or probabilistic classifier is reliable or calibrated if the predicted probabilities are matched by ex post observed frequencies, as examined visually in reliability diagrams. The classical binning and counting approach to plotting reliability diagrams has been hampered by a lack of stability under unavoidable, ad hoc implementation decisions. Here, we introduce the CORP approach, which generates provably statistically consistent, optimally binned, and reproducible reliability diagrams in an automated way. CORP is based on nonparametric isotonic regression and implemented via the pool-adjacent-violators (PAV) algorithm—essentially, the CORP reliability diagram shows the graph of the PAV-(re)calibrated forecast probabilities. The CORP approach allows for uncertainty quantification via either resampling techniques or asymptotic theory, furnishes a numerical measure of miscalibration, and provides a CORP-based Brier-score decomposition that generalizes to any proper scoring rule. We anticipate that judicious uses of the PAV algorithm yield improved tools for diagnostics and inference for a very wide range of statistical and machine learning methods. © 2021 National Academy of Sciences. All rights reserved.
英文关键词Calibration; Discrimination ability; Probability forecast; Score decomposition; Weather prediction
语种英语
scopus关键词algorithm; article; calibration; classifier; decomposition; prediction; probability; reliability; uncertainty; weather
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/180570
作者单位Alfred Weber Institute of Economics, Heidelberg University, Heidelberg, 69115, Germany; Computational Statistics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany; Institute for Stochastics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
推荐引用方式
GB/T 7714
Dimitriadis T.,Gneiting T.,Jordan A.I.. Stable reliability diagrams for probabilistic classifiers[J],2021,118(8).
APA Dimitriadis T.,Gneiting T.,&Jordan A.I..(2021).Stable reliability diagrams for probabilistic classifiers.Proceedings of the National Academy of Sciences of the United States of America,118(8).
MLA Dimitriadis T.,et al."Stable reliability diagrams for probabilistic classifiers".Proceedings of the National Academy of Sciences of the United States of America 118.8(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dimitriadis T.]的文章
[Gneiting T.]的文章
[Jordan A.I.]的文章
百度学术
百度学术中相似的文章
[Dimitriadis T.]的文章
[Gneiting T.]的文章
[Jordan A.I.]的文章
必应学术
必应学术中相似的文章
[Dimitriadis T.]的文章
[Gneiting T.]的文章
[Jordan A.I.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。