CCPortal
DOI10.1016/j.rse.2020.111900
150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean
Vandermeulen R.A.; Mannino A.; Craig S.E.; Werdell P.J.
发表日期2020
ISSN00344257
卷号247
英文摘要This article proposes a simple and intuitive classification system by which to define full spectral remote sensing reflectance (Rrs(λ)) data with a quantitative output that enables a more manageable handling of spectral information for aquatic science applications. The weighted harmonic mean of the Rrs(λ) wavelengths outputs an Apparent Visible Wavelength (in units of nanometers), representing a one-dimensional geophysical metric of color that is inherently correlated to spectral shape. This dimensionality reduction of spectral information combined with the output along a continuum of wavelength values offers a robust and user-friendly means to describe and analyze spectral Rrs(λ) in terms of spatial and temporal trends and variability. The uncertainty in the algorithm's estimation of spectral shape is demonstrated on a global scale, in addition to the utility of the algorithm to discern spectral-spatial-temporal trends in the ocean, on a per-pixel basis for the entire 22 year continuous ocean color (SeaWiFS and MODIS-Aqua) time-series. This technique can be applied to datasets of varying multi- and hyper-spectral resolutions, providing continuity between heritage and future satellite sensors, and further enabling an effective means of elucidating similarities or differences in complex spectral signatures within the constraints of two dimensions. This straightforward means of conceptualizing multi-dimensional variability can help maximize the potential of the spectral information embedded in remote sensing data. © 2020 The Author(s)
英文关键词HICO; MODIS; Ocean color; Optical water types; Remote sensing reflectance; SeaWiFS; Spectral classification; Spectral shape; Spectral-spatial-temporal variability; VIIRS
语种英语
scopus关键词Classification (of information); Color; Dimensionality reduction; Reflection; Classification system; Remote sensing data; Remote-sensing reflectance; Spatial and temporal trends; Spectral information; Spectral signature; Visible wavelengths; Weighted harmonic means; Remote sensing; algorithm; ocean color; remote sensing; satellite data; satellite sensor; spectral reflectance; spectral resolution; spectrum; wavelet analysis
来源期刊Remote Sensing of Environment
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/179261
作者单位Science Systems and Applications, Inc., Lanham, MD 20706, United States; NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States; University Space Research Association, Columbia, MD 21046, United States
推荐引用方式
GB/T 7714
Vandermeulen R.A.,Mannino A.,Craig S.E.,et al. 150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean[J],2020,247.
APA Vandermeulen R.A.,Mannino A.,Craig S.E.,&Werdell P.J..(2020).150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean.Remote Sensing of Environment,247.
MLA Vandermeulen R.A.,et al."150 shades of green: Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean".Remote Sensing of Environment 247(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Vandermeulen R.A.]的文章
[Mannino A.]的文章
[Craig S.E.]的文章
百度学术
百度学术中相似的文章
[Vandermeulen R.A.]的文章
[Mannino A.]的文章
[Craig S.E.]的文章
必应学术
必应学术中相似的文章
[Vandermeulen R.A.]的文章
[Mannino A.]的文章
[Craig S.E.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。