Climate Change Data Portal
DOI | 10.1175/JCLI-D-20-0308.1 |
Diurnal cycle of coastal convection in the south china sea region and modulation by the BSISO | |
Xu W.; Rutledge S.A.; Chudler K. | |
发表日期 | 2021 |
ISSN | 08948755 |
起始页码 | 4297 |
结束页码 | 4314 |
卷号 | 34期号:11 |
英文摘要 | Using 17-yr spaceborne precipitation radar measurements, this study investigates how diurnal cycles of rainfall and convective characteristics over the South China Sea region are modulated by the boreal summer intraseasonal oscillation (BSISO). Generally, diurnal cycles change significantly between suppressed and active BSISO periods. Over the Philippines and Indochina, where the low-level monsoon flows impinge on coast lines, diurnal cycles of rainfall and many convective properties are enhanced during suppressed periods. During active periods, diurnal variation of convection is still significant over land but diminishes over water. Also, afternoon peaks of rainfall and MCS populations over land are obviously extended in active periods, mainly through the enhancement of stratiform precipitation. Over Borneo, where the prevailing low-level winds are parallel to coasts, diurnal cycles (both onshore and offshore) are actually stronger during active periods. Radar profiles also demonstrate a pronounced nocturnal offshore propagation of deep convection over western Borneo in active periods. During suppressed periods, coastal afternoon convection over Borneo is reduced, and peak convection occurs over the mountains until the convective suppression is overcome in the late afternoon or evening. A major portion (.70%) of the total precipitation over the Philippines and Indochina during suppressed periods falls from afternoon isolated to medium-sized systems (,10 000 km2), but more than 70% of the active BSISO rainfall is contributed by nocturnal (after 1800 LT) broad precipitation systems (.10 000 km2). However, offshore total precipitation is dominated by large precipitation systems (.10 000 km2) regardless of BSISO phases and regions. © 2021 American Meteorological Society. |
英文关键词 | Convection; Diurnal effects; Intraseasonal variability; Madden-Julian oscillation; Mesoscale systems; Precipitation |
语种 | 英语 |
scopus关键词 | Offshore oil well production; Radar; Rain; Boreal summer intraseasonal oscillation; Convective properties; Diurnal variation; Low-level winds; Precipitation radar; Precipitation systems; Stratiform precipitation; Total precipitation; Radar measurement |
来源期刊 | Journal of Climate
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/178531 |
作者单位 | Sun Yat-Sen University, Zhuhai, China; Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China; Colorado State University, Fort Collins, CO, United States |
推荐引用方式 GB/T 7714 | Xu W.,Rutledge S.A.,Chudler K.. Diurnal cycle of coastal convection in the south china sea region and modulation by the BSISO[J],2021,34(11). |
APA | Xu W.,Rutledge S.A.,&Chudler K..(2021).Diurnal cycle of coastal convection in the south china sea region and modulation by the BSISO.Journal of Climate,34(11). |
MLA | Xu W.,et al."Diurnal cycle of coastal convection in the south china sea region and modulation by the BSISO".Journal of Climate 34.11(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。