Climate Change Data Portal
DOI | 10.1038/s41612-018-0046-4 |
Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions | |
Burkhardt U.; Bock L.; Bier A. | |
发表日期 | 2018 |
ISSN | 23973722 |
卷号 | 1期号:1 |
英文摘要 | Contrail cirrus are a major component of the climate forcing due to air traffic. For a given contrail cirrus cover, ice water content and ice crystal shape, their impact on radiation is dependent on the number and size of ice crystals. Here we use a global climate model to study the impact of a reduction in initially formed ice crystal numbers, as may be caused by reduced soot number emissions. We find that for reduced initial ice crystal numbers the ice water content is decreased and ice crystal sizes increased, leading to a reduction in contrail cirrus optical depth and doubling the fraction of contrail cirrus that cannot be detected by satellite remote sensing. Contrail cirrus lifetimes and coverage are strongly reduced leading to significant reductions in contrail cirrus radiative forcing. The global climate impact of contrail cirrus is nonlinearly dependent on the reduction in initial ice crystal numbers. A reduction in the initial ice crystal number of 80% leads to a decrease in contrail cirrus radiative forcing by 50%, whereas a twofold reduction leads to a decrease in radiative forcing by approximately 20%. Only a few contrail cirrus outbreaks explain a large percentage of the climate impact. The contrail cirrus climate impact can be effectively mitigated by reducing initial ice crystal concentrations in such outbreak situations. Our results are important for assessments dealing with mitigating the climate impact of aviation and discussions about the use of alternative fuels or lean combustion in aviation. © 2018, The Author(s). |
语种 | 英语 |
scopus关键词 | air traffic; cirrus; climate effect; climate forcing; cloud classification; cloud microphysics; ice crystal; optical depth; radiative forcing |
来源期刊 | npj Climate and Atmospheric Science
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/178173 |
作者单位 | Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany |
推荐引用方式 GB/T 7714 | Burkhardt U.,Bock L.,Bier A.. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions[J],2018,1(1). |
APA | Burkhardt U.,Bock L.,&Bier A..(2018).Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions.npj Climate and Atmospheric Science,1(1). |
MLA | Burkhardt U.,et al."Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions".npj Climate and Atmospheric Science 1.1(2018). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。