CCPortal
DOI10.1038/s41612-020-00149-4
Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes
Kelder T.; Müller M.; Slater L.J.; Marjoribanks T.I.; Wilby R.L.; Prudhomme C.; Bohlinger P.; Ferranti L.; Nipen T.
发表日期2020
ISSN23973722
卷号3期号:1
英文摘要Sample sizes of observed climate extremes are typically too small to reliably constrain return period estimates when there is non-stationary behaviour. To increase the historical record 100-fold, we apply the UNprecedented Simulated Extreme ENsemble (UNSEEN) approach, by pooling ensemble members and lead times from the ECMWF seasonal prediction system SEAS5. We fit the GEV distribution to the UNSEEN ensemble with a time covariate to facilitate detection of changes in 100-year precipitation values over a period of 35 years (1981–2015). Applying UNSEEN trends to 3-day precipitation extremes over Western Norway substantially reduces uncertainties compared to estimates based on the observed record and returns no significant linear trend over time. For Svalbard, UNSEEN trends suggests there is a significant rise in precipitation extremes, such that the 100-year event estimated in 1981 occurs with a return period of around 40 years in 2015. We propose a suite of methods to evaluate UNSEEN and highlight paths for further developing UNSEEN trends to investigate non-stationarities in climate extremes. © 2020, The Author(s).
语种英语
scopus关键词climate prediction; decadal variation; ensemble forecasting; extreme event; historical record; precipitation (climatology); seasonal variation; trend analysis
来源期刊npj Climate and Atmospheric Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/178018
作者单位Geography and Environment, Loughborough University, Loughborough, United Kingdom; The Norwegian Meteorological Institute, Oslo, Norway; Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, Oslo, Norway; School of Geography and the Environment, University of Oxford, Oxford, United Kingdom; School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough, United Kingdom; European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, United Kingdom; Centre for Ecology and Hydrology, Wallingford, United Kingdom
推荐引用方式
GB/T 7714
Kelder T.,Müller M.,Slater L.J.,et al. Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes[J],2020,3(1).
APA Kelder T..,Müller M..,Slater L.J..,Marjoribanks T.I..,Wilby R.L..,...&Nipen T..(2020).Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes.npj Climate and Atmospheric Science,3(1).
MLA Kelder T.,et al."Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes".npj Climate and Atmospheric Science 3.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kelder T.]的文章
[Müller M.]的文章
[Slater L.J.]的文章
百度学术
百度学术中相似的文章
[Kelder T.]的文章
[Müller M.]的文章
[Slater L.J.]的文章
必应学术
必应学术中相似的文章
[Kelder T.]的文章
[Müller M.]的文章
[Slater L.J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。