Climate Change Data Portal
DOI | 10.5194/bg-17-6115-2020 |
Spatially resolved evaluation of Earth system models with satellite column-averaged CO2 | |
Gier B.K.; Buchwitz M.; Reuter M.; Cox P.M.; Friedlingstein P.; Eyring V. | |
发表日期 | 2020 |
ISSN | 17264170 |
起始页码 | 6115 |
结束页码 | 6144 |
卷号 | 17期号:23 |
英文摘要 | Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) showed large uncertainties in simulating atmospheric CO2 concentrations. We utilize the Earth System Model Evaluation Tool (ESMValTool) to evaluate emission-driven CMIP5 and CMIP6 simulations with satellite data of column-average CO2 mole fractions (XCO2). XCO2 time series show a large spread among the model ensembles both in CMIP5 and CMIP6. Compared to the satellite observations, the models have a bias of C25 to 20 ppmv in CMIP5 and C20 to 15 ppmv in CMIP6, with the multi-model mean biases at C10 and C2 ppmv, respectively. The derived mean atmospheric XCO2 growth rate (GR) of 2.0 ppmv yr1 is overestimated by 0.4 ppmv yr1 in CMIP5 and 0.3 ppmv yr1 in CMIP6 for the multi-model mean, with a good reproduction of the interannual variability. All models capture the expected increase of the seasonal cycle amplitude (SCA) with increasing latitude, but most models underestimate the SCA. Any SCA derived from data with missing values can only be considered an effective SCA, as the missing values could occur at the peaks or troughs. The satellite data are a combined data product covering the period 2003-2014 based on the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY)/Envisat (2003- 2012) and Thermal And Near infrared Sensor for carbon Observation Fourier transform spectrometer/Greenhouse Gases Observing Satellite (TANSO-FTS/GOSAT) (2009-2014) instruments. While the combined satellite product shows a strong negative trend of decreasing effective SCA with increasing XCO2 in the northern midlatitudes, both CMIP ensembles instead show a non-significant positive trend in the multi-model mean. The negative trend is reproduced by the models when sampling them as the observations, attributing it to sampling characteristics. Applying a mask of the mean data coverage of each satellite to the models, the effective SCA is higher for the SCIAMACHY/Envisat mask than when using the TANSO-FTS/GOSAT mask. This induces an artificial negative trend when using observational sampling over the full period, as SCIAMACHY/Envisat covers the early period until 2012, with TANSO-FTS/GOSAT measurements starting in 2009. Overall, the CMIP6 ensemble shows better agreement with the satellite data than the CMIP5 ensemble in all considered quantities (XCO2, GR, SCA and trend in SCA). This study shows that the availability of column-integral CO2 from satellite provides a promising new way to evaluate the performance of Earth system models on a global scale, complementing existing studies that are based on in situ measurements from single groundbased stations. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. |
scopus关键词 | carbon dioxide; CMIP; Envisat; GOSAT; numerical model; satellite data; SCIAMACHY |
来源期刊 | Biogeosciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/176724 |
作者单位 | University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germany; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QE, United Kingdom; LMD/IPSL, Ens, Psl Université, École Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, Cnrs, Paris, France |
推荐引用方式 GB/T 7714 | Gier B.K.,Buchwitz M.,Reuter M.,et al. Spatially resolved evaluation of Earth system models with satellite column-averaged CO2[J],2020,17(23). |
APA | Gier B.K.,Buchwitz M.,Reuter M.,Cox P.M.,Friedlingstein P.,&Eyring V..(2020).Spatially resolved evaluation of Earth system models with satellite column-averaged CO2.Biogeosciences,17(23). |
MLA | Gier B.K.,et al."Spatially resolved evaluation of Earth system models with satellite column-averaged CO2".Biogeosciences 17.23(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。