CCPortal
DOI10.1029/2019GL085523
Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano
Ren C.X.; Peltier A.; Ferrazzini V.; Rouet-Leduc B.; Johnson P.A.; Brenguier F.
发表日期2020
ISSN 0094-8276
卷号47期号:3
英文摘要Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data from the Piton de la Fournaise volcano (La Réunion island) to describe specific patterns of seismic signals recorded during eruptions. These results unveil what we interpret as signals associated with various eruptive dynamics of the volcano, including the effusion of a large volume of lava during the August–October 2015 eruption as well as the closing of the eruptive vent during the September–November 2018 eruption. The machine learning workflow we describe can easily be applied to other active volcanoes, potentially leading to an enhanced understanding of the temporal and spatial evolution of volcanic eruptions. © 2020. The Authors.
英文关键词Machine learning; Seismic waves; Seismology; Structural geology; Active volcanoes; Eruptive dynamics; Machine learning techniques; Magmatic systems; Piton de la Fournaise volcano; Seismic signatures; Temporal and spatial evolutions; Volcanic eruptions; Volcanoes; machine learning; seismic data; volcanic eruption; volcano; Piton de la Fournaise
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/170796
作者单位Space Data Science and Systems Group, Los Alamos National Laboratory, Los Alamos, NM, United States; Geophysics Group, Los Alamos National Laboratory, Los Alamos, NM, United States; Université de Paris, Institut de physique du globe de Paris, CNRS, Paris, France; Observatoire volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris, La Plaine des Cafres, France; ISterre, Université Grenoble Alpes, Gières, France
推荐引用方式
GB/T 7714
Ren C.X.,Peltier A.,Ferrazzini V.,et al. Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano[J],2020,47(3).
APA Ren C.X.,Peltier A.,Ferrazzini V.,Rouet-Leduc B.,Johnson P.A.,&Brenguier F..(2020).Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano.Geophysical Research Letters,47(3).
MLA Ren C.X.,et al."Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano".Geophysical Research Letters 47.3(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren C.X.]的文章
[Peltier A.]的文章
[Ferrazzini V.]的文章
百度学术
百度学术中相似的文章
[Ren C.X.]的文章
[Peltier A.]的文章
[Ferrazzini V.]的文章
必应学术
必应学术中相似的文章
[Ren C.X.]的文章
[Peltier A.]的文章
[Ferrazzini V.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。