CCPortal
DOI10.1029/2019GL086405
Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis
Lin P.; Pan M.; Allen G.H.; de Frasson R.P.; Zeng Z.; Yamazaki D.; Wood E.F.
发表日期2020
ISSN 0094-8276
卷号47期号:7
英文摘要Recent progress in remote sensing has snapshotted unprecedented numbers of river planform geometry, providing opportunity to revisit the oversimplified channel shape parameterizations in global hydrologic models. This study leveraged two recent Landsat-derived global river width databases and created a reach-level width dataset to measure the validity of model parameterizations at ~1.6 million kilometers of rivers in length. By showing state-of-the-art parameterization schemes only capture 30–40% of the width variance globally, we developed a machine learning (ML) approach surveying 16 environmental covariates, which considerably improved the predictive power (R2 = 0.81 and 0.77 for two testing cases). Beyond the commonly discussed upstream basin conditions, ML revealed that local physiographic factors and human interference are also important covariates for width variability. Finally, we applied the ML model to estimate bankfull river width, creating a new reach-level dataset for use in global hydrodynamic modeling. ©2020. American Geophysical Union. All Rights Reserved.
英文关键词Big data; Parameterization; Remote sensing; Stream flow; Geo-spatial analysis; Human interference; Hydrodynamic model; Hydrologic models; Parameterization schemes; Predictive power; Recent progress; State of the art; Rivers; data set; estimation method; hydrodynamics; hydrological modeling; Landsat; machine learning; river bank; river system
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/170491
作者单位Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States; Department of Geography, Texas A&M University, College Station, TX, United States; Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, United States; Now at School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
推荐引用方式
GB/T 7714
Lin P.,Pan M.,Allen G.H.,et al. Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis[J],2020,47(7).
APA Lin P..,Pan M..,Allen G.H..,de Frasson R.P..,Zeng Z..,...&Wood E.F..(2020).Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis.Geophysical Research Letters,47(7).
MLA Lin P.,et al."Global Estimates of Reach-Level Bankfull River Width Leveraging Big Data Geospatial Analysis".Geophysical Research Letters 47.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin P.]的文章
[Pan M.]的文章
[Allen G.H.]的文章
百度学术
百度学术中相似的文章
[Lin P.]的文章
[Pan M.]的文章
[Allen G.H.]的文章
必应学术
必应学术中相似的文章
[Lin P.]的文章
[Pan M.]的文章
[Allen G.H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。