Climate Change Data Portal
DOI | 10.1029/2020GL088440 |
Agile Adaptive Radar Sampling of Fast-Evolving Atmospheric Phenomena Guided by Satellite Imagery and Surface Cameras | |
Kollias P.; Luke E.; Oue M.; Lamer K. | |
发表日期 | 2020 |
ISSN | 0094-8276 |
卷号 | 47期号:14 |
英文摘要 | The collection of high temporal resolution radar observations without compromising data quality requires adaptability and agility. So far, radar beam steering has been mostly guided by (i) expert judgment or (ii) stand-alone automated identification and tracking algorithms operating on measurements collected by radar. The current study proposes a new paradigm, where external observations are used to optimize a radar's sampling strategy. Here the sampling strategy of a phased-array radar and a polarimetric scanning cloud radar, two different yet uniquely complementary systems, is guided by an algorithm that uses observations from a geostationary satellite, a surface camera and the radars themselves to identify and track atmospheric phenomena. The tailored pointing and increase in sensitivity realized through this framework enables the steered radars to sample a diverse set of atmospheric phenomena such as shallow cumuli, lightning-induced ice crystal orientation and a series of waterspouts. ©2020. The Authors. |
英文关键词 | Cameras; Crystal orientation; Geostationary satellites; Radar imaging; Radar signal processing; Radar tracking; Satellite imagery; Space-based radar; Atmospheric phenomena; Automated identification; Complementary systems; High temporal resolution; Phased array radars; Polarimetric scanning; Radar observations; Sampling strategies; Radar measurement; algorithm; automation; data quality; geostationary satellite; ice crystal; optimization; radar; satellite data; satellite imagery; tracking |
语种 | 英语 |
来源期刊 | Geophysical Research Letters
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/170117 |
作者单位 | Division of Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States; Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, United States |
推荐引用方式 GB/T 7714 | Kollias P.,Luke E.,Oue M.,et al. Agile Adaptive Radar Sampling of Fast-Evolving Atmospheric Phenomena Guided by Satellite Imagery and Surface Cameras[J],2020,47(14). |
APA | Kollias P.,Luke E.,Oue M.,&Lamer K..(2020).Agile Adaptive Radar Sampling of Fast-Evolving Atmospheric Phenomena Guided by Satellite Imagery and Surface Cameras.Geophysical Research Letters,47(14). |
MLA | Kollias P.,et al."Agile Adaptive Radar Sampling of Fast-Evolving Atmospheric Phenomena Guided by Satellite Imagery and Surface Cameras".Geophysical Research Letters 47.14(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Kollias P.]的文章 |
[Luke E.]的文章 |
[Oue M.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Kollias P.]的文章 |
[Luke E.]的文章 |
[Oue M.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Kollias P.]的文章 |
[Luke E.]的文章 |
[Oue M.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。