CCPortal
DOI10.1029/2020GL088353
Identifying Different Classes of Seismic Noise Signals Using Unsupervised Learning
Johnson C.W.; Ben-Zion Y.; Meng H.; Vernon F.
发表日期2020
ISSN 0094-8276
卷号47期号:15
英文摘要Proper classification of nontectonic seismic signals is critical for detecting microearthquakes and developing an improved understanding of ongoing weak ground motions. We use unsupervised machine learning to label five classes of nonstationary seismic noise common in continuous waveforms. Temporal and spectral features describing the data are clustered to identify separable types of emergent and impulsive waveforms. The trained clustering model is used to classify every 1 s of continuous seismic records from a dense seismic array with 10–30 m station spacing. We show that dominate noise signals can be highly localized and vary on length scales of hundreds of meters. The methodology demonstrates the complexity of weak ground motions and improves the standard of analyzing seismic waveforms with a low signal-to-noise ratio. Application of this technique will improve the ability to detect genuine microseismic events in noisy environments where seismic sensors record earthquake-like signals originating from nontectonic sources. © 2020. American Geophysical Union. All Rights Reserved.
英文关键词Seismic waves; Signal to noise ratio; Clustering model; Continuous waveforms; Low signal-to-noise ratio; Micro-earthquakes; Microseismic events; Noisy environment; Seismic waveforms; Unsupervised machine learning; Earthquakes; complexity; ground motion; seismic noise; signal-to-noise ratio; spectral analysis; unsupervised classification; waveform analysis
语种英语
来源期刊Geophysical Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/170051
作者单位Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, United States; Now at Los Alamos National Laboratory, Los Alamos, NM, United States; Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
推荐引用方式
GB/T 7714
Johnson C.W.,Ben-Zion Y.,Meng H.,et al. Identifying Different Classes of Seismic Noise Signals Using Unsupervised Learning[J],2020,47(15).
APA Johnson C.W.,Ben-Zion Y.,Meng H.,&Vernon F..(2020).Identifying Different Classes of Seismic Noise Signals Using Unsupervised Learning.Geophysical Research Letters,47(15).
MLA Johnson C.W.,et al."Identifying Different Classes of Seismic Noise Signals Using Unsupervised Learning".Geophysical Research Letters 47.15(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Johnson C.W.]的文章
[Ben-Zion Y.]的文章
[Meng H.]的文章
百度学术
百度学术中相似的文章
[Johnson C.W.]的文章
[Ben-Zion Y.]的文章
[Meng H.]的文章
必应学术
必应学术中相似的文章
[Johnson C.W.]的文章
[Ben-Zion Y.]的文章
[Meng H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。