CCPortal
DOI10.1039/c8ee02700e
Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain
Niermann M.; Drünert S.; Kaltschmitt M.; Bonhoff K.
发表日期2019
ISSN1754-5692
起始页码290
结束页码307
卷号12期号:1
英文摘要Long-distance transport and long-term storage of hydrogen can be realized with Liquid Organic Hydrogen Carriers (LOHC) based on a two-step cycle: (1) loading of hydrogen (hydrogenation) into the LOHC molecule (i.e., hydrogen is covalently bound to the LOHC) and (2) unloading of hydrogen (dehydrogenation) after transport and storage. Since the (optimal) LOHC is liquid at ambient conditions and shows similar properties to crude oil based liquids (e.g. diesel, and gasoline), handling and storage is realized by well-known processes; thus stepwise adaptation of the existing crude oil based infrastructure is basically possible. Against this background, a defined process chain for intercontinental ship transport of hydrogen (5000 km) is simulated with various LOHCs. The respective results are evaluated and assessed related to their technological and economic performance. Additionally, they are compared to a pipeline-based provision chain based on compressed hydrogen (CGH 2 ). Among others, the results show that methanol is the cheapest LOHC option for storage and transportation followed by dibenzyltoluene and toluene. For a storage time of 60 days they show economic advantages compared to compressed hydrogen (CGH 2 ) under the defined assumptions; thus these LOHC options are especially advantageous for long-term storage/long distance transport applications. The energetic efficiency of the systems mainly depends on the source of the dehydrogenation heat. Two options, dehydrogenation driven by hydrogen burning vs. dehydrogenation driven by waste heat, have been evaluated in this study. Systems that run on waste heat perform much better in terms of efficiency. Overall, LOHCs can provide technologically efficient and economic promising storage and transport within a sustainable hydrogen economy. © 2019 The Royal Society of Chemistry.
语种英语
scopus关键词Crude oil; Dehydrogenation; Economic analysis; Efficiency; Hydrogen fuels; Liquids; Unloading; Waste heat; Compressed hydrogens; Economic advantages; Economic performance; Energetic efficiency; Long-distance transport; Storage and transportations; Techno- economic analysis; Transport applications; Hydrogen storage; crude oil; economic analysis; hydrogen; liquid; methanol; storage; transportation
来源期刊Energy and Environmental Science
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/162698
作者单位Hamburg University of Technology, Institute of Environmental Technology and Energy Economics, Eißendorfer Str. 40, Hamburg, 21073, Germany; National Organisation Hydrogen and Fuel Cell Technology, Fasanenstr. 5, Berlin, 10623, Germany
推荐引用方式
GB/T 7714
Niermann M.,Drünert S.,Kaltschmitt M.,et al. Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain[J],2019,12(1).
APA Niermann M.,Drünert S.,Kaltschmitt M.,&Bonhoff K..(2019).Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain.Energy and Environmental Science,12(1).
MLA Niermann M.,et al."Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain".Energy and Environmental Science 12.1(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Niermann M.]的文章
[Drünert S.]的文章
[Kaltschmitt M.]的文章
百度学术
百度学术中相似的文章
[Niermann M.]的文章
[Drünert S.]的文章
[Kaltschmitt M.]的文章
必应学术
必应学术中相似的文章
[Niermann M.]的文章
[Drünert S.]的文章
[Kaltschmitt M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。