Climate Change Data Portal
DOI | 10.1039/c9ee01453e |
Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal-O2 batteries | |
Mourad E.; Petit Y.K.; Spezia R.; Samojlov A.; Summa F.F.; Prehal C.; Leypold C.; Mahne N.; Slugovc C.; Fontaine O.; Brutti S.; Freunberger S.A. | |
发表日期 | 2019 |
ISSN | 1754-5692 |
起始页码 | 2559 |
结束页码 | 2568 |
卷号 | 12期号:8 |
英文摘要 | Aprotic alkali metal-oxygen batteries require reversible formation of metal superoxide or peroxide on cycling. Severe parasitic reactions cause poor rechargeability, efficiency, and cycle life and have been shown to be caused by singlet oxygen (1O2) that forms at all stages of cycling. However, its formation mechanism remains unclear. We show that disproportionation of superoxide, the product or intermediate on discharge and charge, to peroxide and oxygen is responsible for 1O2 formation. While the overall reaction is driven by the stability of peroxide and thus favored by stronger Lewis acidic cations such as Li+, the 1O2 fraction is enhanced by weak Lewis acids such as organic cations. Concurrently, the metal peroxide yield drops with increasing 1O2. The results explain a major parasitic pathway during cell cycling and the growing severity in K-, Na-, and Li-O2 cells based on the growing propensity for disproportionation. High capacities and rates with peroxides are now realized to require solution processes, which form peroxide or release O2via disproportionation. The results therefore establish the central dilemma that disproportionation is required for high capacity but also responsible for irreversible reactions. Highly reversible cell operation requires hence finding reaction routes that avoid disproportionation. © The Royal Society of Chemistry 2019. |
语种 | 英语 |
scopus关键词 | Lithium compounds; Metals; Oxidation; Peroxides; Positive ions; Sodium compounds; Disproportionations; Formation mechanism; Irreversible reactions; Organic cations; Overall reactions; Parasitic reaction; Reversible formation; Solution process; Secondary batteries; cation; chemical reaction; energy efficiency; formation mechanism; fuel cell; metal; oxygen |
来源期刊 | Energy and Environmental Science |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/162690 |
作者单位 | Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria; Laboratoire de Chimie Théorique, UMR 7616 CNRS, Sorbonne Université, CC 137, 4, Place Jussieu, Paris Cedex 05, 75252, France; Dipartimento di Scienze, Università della Basilicata, V.le Ateneo Lucano 10, Potenza, 85100, Italy; Institut Charles Gerhardt Montpellier, UMR 5253, CC 1701, Université Montpellier, Place Eugène Bataillon, Montpellier Cedex 5, 34095, France; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 33 rue Saint Leu, Amiens, 80039, France; Dipartimento di Chimica, Università di Roma la Sapienza, P.le A. Moro 5, Roma, 00185, Italy |
推荐引用方式 GB/T 7714 | Mourad E.,Petit Y.K.,Spezia R.,et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal-O2 batteries[J],2019,12(8). |
APA | Mourad E..,Petit Y.K..,Spezia R..,Samojlov A..,Summa F.F..,...&Freunberger S.A..(2019).Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal-O2 batteries.Energy and Environmental Science,12(8). |
MLA | Mourad E.,et al."Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal-O2 batteries".Energy and Environmental Science 12.8(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。