CCPortal
DOI10.1073/pnas.1917007117
Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier
Meng J.; Fan J.; Ludescher J.; Agarwal A.; Chen X.; Bunde A.; Kurths J.; Schellnhuber H.J.
发表日期2020
ISSN0027-8424
起始页码177
结束页码183
卷号117期号:1
英文摘要The El Niño Southern Oscillation (ENSO) is one of the most prominent interannual climate phenomena. Early and reliable ENSO forecasting remains a crucial goal, due to its serious implications for economy, society, and ecosystem. Despite the development of various dynamical and statistical prediction models in the recent decades, the “spring predictability barrier” remains a great challenge for long-lead-time (over 6 mo) forecasting. To overcome this barrier, here we develop an analysis tool, System Sample Entropy (SysSampEn), to measure the complexity (disorder) of the system composed of temperature anomaly time series in the Niño 3.4 region. When applying this tool to several near-surface air temperature and sea surface temperature datasets, we find that in all datasets a strong positive correlation exists between the magnitude of El Niño and the previous calendar year’s SysSampEn (complexity). We show that this correlation allows us to forecast the magnitude of an El Niño with a prediction horizon of 1 y and high accuracy (i.e., root-mean-square error = 0.23◦ C for the average of the individual datasets forecasts). For the 2018 El Niño event, our method forecasted a weak El Niño with a magnitude of 1.11 ± 0.23◦ C. Our framework presented here not only facilitates long-term forecasting of the El Niño magnitude but can potentially also be used as a measure for the complexity of other natural or engineering complex systems. © 2020 National Academy of Sciences. All rights reserved.
英文关键词ENSO; Entropy; Forecasting; Spring barrier; System complexity
语种英语
scopus关键词air temperature; article; El Nino; entropy; forecasting; prediction; sea surface temperature; spring; time series analysis
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/161094
作者单位Meng, J., Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany; Fan, J., Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany, School of Systems Science, Beijing Normal University, Beijing, 100875, China; Ludescher, J., Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany; Agarwal, A., Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany, Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, 247667, India, Hydrology, GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany; Chen, X., School of Systems Science, Beijing Normal University, Beijing, 100875, China; Bunde, A., Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, Giessen, 35392, Germany; Kurths, J., Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany, Department of Physics, Humboldt University, Berlin, 10099, Germany; Schellnhuber, H.J., Potsdam Institute for Climate Impact Research, Potsdam, 14412, Germany
推荐引用方式
GB/T 7714
Meng J.,Fan J.,Ludescher J.,et al. Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier[J],2020,117(1).
APA Meng J..,Fan J..,Ludescher J..,Agarwal A..,Chen X..,...&Schellnhuber H.J..(2020).Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier.Proceedings of the National Academy of Sciences of the United States of America,117(1).
MLA Meng J.,et al."Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier".Proceedings of the National Academy of Sciences of the United States of America 117.1(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Meng J.]的文章
[Fan J.]的文章
[Ludescher J.]的文章
百度学术
百度学术中相似的文章
[Meng J.]的文章
[Fan J.]的文章
[Ludescher J.]的文章
必应学术
必应学术中相似的文章
[Meng J.]的文章
[Fan J.]的文章
[Ludescher J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。