Climate Change Data Portal
DOI | 10.1073/pnas.2002858117 |
Stretching and folding sustain microscale chemical gradients in porous media | |
Heyman J.; Lester D.R.; Turuban R.; Méheust Y.; Le Borgne T. | |
发表日期 | 2020 |
ISSN | 0027-8424 |
起始页码 | 13359 |
结束页码 | 13365 |
卷号 | 117期号:24 |
英文摘要 | Fluid flow in porous media drives the transport, mixing, and reaction of molecules, particles, and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes. Here, we obtain high-resolution experimental images of microscale mixing patterns in three-dimensional porous media and uncover an unexpected and general mixing mechanism that strongly enhances concentration gradients at pore-scale. Our experiments reveal that systematic stretching and folding of fluid elements are produced in the pore space by grain contacts, through a mechanism that leads to efficient microscale chaotic mixing. These insights form the basis for a general kinematic model linking chaotic-mixing rates in the fluid phase to the generic structural properties of granular matter. The model successfully predicts the resulting enhancement of pore-scale chemical gradients, which appear to be orders of magnitude larger than predicted by dispersive approaches. These findings offer perspectives for predicting and controlling the vast diversity of reactive transport processes in natural and synthetic porous materials, beyond the current dispersion paradigm. © 2020 National Academy of Sciences. All rights reserved. |
英文关键词 | Chaotic mixing; Chemical gradients; Porous media; Reactive transport |
语种 | 英语 |
scopus关键词 | article; grain |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/160918 |
作者单位 | Heyman, J., Géosciences Rennes, Université de Rennes, CNRS, Unité Mixte de Recherche 6118, Rennes, 35000, France; Lester, D.R., School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; Turuban, R., Géosciences Rennes, Université de Rennes, CNRS, Unité Mixte de Recherche 6118, Rennes, 35000, France; Méheust, Y., Géosciences Rennes, Université de Rennes, CNRS, Unité Mixte de Recherche 6118, Rennes, 35000, France; Le Borgne, T., Géosciences Rennes, Université de Rennes, CNRS, Unité Mixte de Recherche 6118, Rennes, 35000, France |
推荐引用方式 GB/T 7714 | Heyman J.,Lester D.R.,Turuban R.,et al. Stretching and folding sustain microscale chemical gradients in porous media[J],2020,117(24). |
APA | Heyman J.,Lester D.R.,Turuban R.,Méheust Y.,&Le Borgne T..(2020).Stretching and folding sustain microscale chemical gradients in porous media.Proceedings of the National Academy of Sciences of the United States of America,117(24). |
MLA | Heyman J.,et al."Stretching and folding sustain microscale chemical gradients in porous media".Proceedings of the National Academy of Sciences of the United States of America 117.24(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。