CCPortal
DOI10.1073/pnas.1918964117
Adversarial super-resolution of climatological wind and solar data
Stengel K.; Glaws A.; Hettinger D.; King R.N.
发表日期2020
ISSN0027-8424
起始页码16805
结束页码16815
卷号117期号:29
英文摘要Accurate and high-resolution data reflecting different climate scenarios are vital for policy makers when deciding on the development of future energy resources, electrical infrastructure, transportation networks, agriculture, and many other societally important systems. However, state-of-the-art long-term global climate simulations are unable to resolve the spatiotemporal characteristics necessary for resource assessment or operational planning. We introduce an adversarial deep learning approach to super resolve wind velocity and solar irradiance outputs from global climate models to scales sufficient for renewable energy resource assessment. Using adversarial training to improve the physical and perceptual performance of our networks, we demonstrate up to a 50× resolution enhancement of wind and solar data. In validation studies, the inferred fields are robust to input noise, possess the correct small-scale properties of atmospheric turbulent flow and solar irradiance, and retain consistency at large scales with coarse data. An additional advantage of our fully convolutional architecture is that it allows for training on small domains and evaluation on arbitrarily-sized inputs, including global scale. We conclude with a super-resolution study of renewable energy resources based on climate scenario data from the Intergovernmental Panel on Climate Change's Fifth Assessment Report. © 2020 National Academy of Sciences. All rights reserved.
英文关键词Adversarial training; Climate downscaling; Deep learning
语种英语
scopus关键词article; climate change; deep learning; noise; perception; renewable energy; turbulent flow; validation study
来源期刊Proceedings of the National Academy of Sciences of the United States of America
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/160879
作者单位Stengel, K., Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, United States; Glaws, A., Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, United States; Hettinger, D., Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, CO 80401, United States; King, R.N., Computational Science Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
推荐引用方式
GB/T 7714
Stengel K.,Glaws A.,Hettinger D.,et al. Adversarial super-resolution of climatological wind and solar data[J],2020,117(29).
APA Stengel K.,Glaws A.,Hettinger D.,&King R.N..(2020).Adversarial super-resolution of climatological wind and solar data.Proceedings of the National Academy of Sciences of the United States of America,117(29).
MLA Stengel K.,et al."Adversarial super-resolution of climatological wind and solar data".Proceedings of the National Academy of Sciences of the United States of America 117.29(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stengel K.]的文章
[Glaws A.]的文章
[Hettinger D.]的文章
百度学术
百度学术中相似的文章
[Stengel K.]的文章
[Glaws A.]的文章
[Hettinger D.]的文章
必应学术
必应学术中相似的文章
[Stengel K.]的文章
[Glaws A.]的文章
[Hettinger D.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。