Climate Change Data Portal
DOI | 10.1073/pnas.2002446117 |
Active forces shape the metaphase spindle through a mechanical instability | |
Oriola D.; Jülicher F.; Brugués J. | |
发表日期 | 2020 |
ISSN | 0027-8424 |
起始页码 | 16154 |
结束页码 | 16159 |
卷号 | 117期号:28 |
英文摘要 | The metaphase spindle is a dynamic structure orchestrating chromosome segregation during cell division. Recently, soft matter approaches have shown that the spindle behaves as an active liquid crystal. Still, it remains unclear how active force generation contributes to its characteristic spindle-like shape. Here we combine theory and experiments to show that molecular motor-driven forces shape the structure through a barreling-type instability. We test our physical model by titrating dynein activity in Xenopus egg extract spindles and quantifying the shape and microtubule orientation. We conclude that spindles are shaped by the interplay between surface tension, nematic elasticity, and motor-driven active forces. Our study reveals how motor proteins can mold liquid crystalline droplets and has implications for the design of active soft materials. © 2020 National Academy of Sciences. All rights reserved. |
英文关键词 | Active matter; Dynein; Liquid crystals; Mitotic spindle; Xenopus laevis |
语种 | 英语 |
scopus关键词 | dynein adenosine triphosphatase; molecular motor; dynein adenosine triphosphatase; Xenopus protein; Article; controlled study; crystallization; elasticity; enzyme activity; genomic instability; metaphase; microtubule; molecular dynamics; nonhuman; priority journal; quantum theory; spindle cell; surface tension; titrimetry; Xenopus; animal; biomechanics; chemistry; drug effect; liquid crystal; metabolism; metaphase; mitosis; physiology; spindle apparatus; Xenopus laevis; Animals; Biomechanical Phenomena; Dyneins; Elasticity; Liquid Crystals; Metaphase; Microtubules; Mitosis; Spindle Apparatus; Surface Tension; Xenopus laevis; Xenopus Proteins |
来源期刊 | Proceedings of the National Academy of Sciences of the United States of America
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/160262 |
作者单位 | Oriola, D., Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany, Center for Systems Biology Dresden, Dresden, 01307, Germany, Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany, Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01307, Germany; Jülicher, F., Center for Systems Biology Dresden, Dresden, 01307, Germany, Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany, Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01307, Germany; Brugués, J., Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany, Center for Systems Biology Dresden, Dresden, 01307, Germany, Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany, Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01307, Germany |
推荐引用方式 GB/T 7714 | Oriola D.,Jülicher F.,Brugués J.. Active forces shape the metaphase spindle through a mechanical instability[J],2020,117(28). |
APA | Oriola D.,Jülicher F.,&Brugués J..(2020).Active forces shape the metaphase spindle through a mechanical instability.Proceedings of the National Academy of Sciences of the United States of America,117(28). |
MLA | Oriola D.,et al."Active forces shape the metaphase spindle through a mechanical instability".Proceedings of the National Academy of Sciences of the United States of America 117.28(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。