Climate Change Data Portal
DOI | 10.5194/hess-24-4503-2020 |
Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios | |
Allam A.; Moussa R.; Najem W.; Bocquillon C. | |
发表日期 | 2020 |
ISSN | 1027-5606 |
起始页码 | 4503 |
结束页码 | 4521 |
卷号 | 24期号:9 |
英文摘要 | The Mediterranean region is one of the most sensitive regions to anthropogenic and climatic changes, mostly affecting its water resources and related practices. With multiple studies raising serious concerns about climate shifts and aridity expansion in the region, this one aims to establish a new high-resolution classification for hydrology purposes based on Mediterranean-specific climate indices. This classification is useful in following up on hydrological (water resource management, floods, droughts, etc.) and ecohydrological applications such as Mediterranean agriculture. Olive cultivation is the characteristic agricultural practice of the Mediterranean region. The proposed approach includes the use of classic climatic indices and the definition of new climatic indices, mainly precipitation seasonality index Is or evapotranspiration threshold SPET, both in line with river flow regimes, a principal component analysis to reduce the number of indices, K-means classification to distribute them into classes, and finally the construction of a decision tree based on the distances to class kernels to reproduce the classification without having to repeat the whole process. The classification was set and validated by WorldClim-2 at 1 km high-resolution gridded data for the 1970-2000 baseline period and 144 stations' data over 30 to 120 years, both at monthly time steps. Climatic classes coincided with a geographical distribution in the Mediterranean ranging from the most seasonal and driest class 1 in the south to the least seasonal and most humid class 5 in the north, showing the climatic continuity from one place to another and enhancing the visibility of change trends. The MED-CORDEX ALADIN and CCLM historical and projected data at 12 and 50 km resolution simulated under the RCP4.5 and 8.5 scenarios for the 2070-2100 period served to assess the climate change impact on this classification by superimposing the projected changes on the baseline grid-based classification. RCP scenarios increase the seasonality index Is by C80% and the aridity index IArid by C60% in the north and IArid by C10% without Is change in the south, hence causing the wet season shortening and river regime modification with the migration north of moderate and extreme winter regimes instead of early spring regimes. The ALADIN and CCLM regional climate models (RCMs) have demonstrated an evolution of the Mediterranean region towards arid climate. The classes located to the north are slowly evolving towards moderate coastal classes, which might affect hydrologic regimes due to shorter humid seasons and earlier snowmelts. These scenarios might look favourable for Mediterranean cultivation; however, the expected impact on water resources and flow regimes will surely expand and directly hit ecosystems, food, health, and tourism, as risk is interconnected between domains. This kind of classification might be reproduced at the global scale, using the same or other climatic indices specific to each region, highlighting their physiographic characteristics and hydrological responses. © 2020 Copernicus GmbH. All rights reserved. |
语种 | 英语 |
scopus关键词 | Agricultural robots; Climate change; Cultivation; Decision trees; Geographical distribution; Health risks; Hydrology; Risk perception; Water management; Agricultural practices; Climate change impact; Hydrological response; Mediterranean region; Regional climate modeling; Regional climate models; Seasonality index; Waterresource management; Climate models; agricultural practice; climate change; climate classification; climate modeling; evapotranspiration; geographical distribution; hydrology; principal component analysis; risk assessment; river flow; seasonality; snowmelt; wet season |
来源期刊 | Hydrology and Earth System Sciences
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/159306 |
作者单位 | Allam, A., Creen, Saint-Joseph University, Beirut, 1107, Lebanon, Lisah, Univ. Montpellier, Inrae, Montpellier, France; Moussa, R., Lisah, Univ. Montpellier, Inrae, Montpellier, France; Najem, W., Creen, Saint-Joseph University, Beirut, 1107, Lebanon; Bocquillon, C., Creen, Saint-Joseph University, Beirut, 1107, Lebanon |
推荐引用方式 GB/T 7714 | Allam A.,Moussa R.,Najem W.,et al. Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios[J],2020,24(9). |
APA | Allam A.,Moussa R.,Najem W.,&Bocquillon C..(2020).Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios.Hydrology and Earth System Sciences,24(9). |
MLA | Allam A.,et al."Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios".Hydrology and Earth System Sciences 24.9(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。