Climate Change Data Portal
DOI | 10.3390/rs12111722 |
Creating new near-surface air temperature datasets to understand elevation-dependent warming in the Tibetan Plateau | |
Zhang M.; Wang B.; Cleverly J.; Liu D.L.; Feng P.; Zhang H.; Huete A.; Yang X.; Yu Q. | |
发表日期 | 2020 |
ISSN | 0003598X |
卷号 | 12期号:11 |
英文摘要 | The Tibetan Plateau has been undergoing accelerated warming over recent decades, and is considered an indicator for broader global warming phenomena. However, our understanding of warming rates with elevation in complex mountain regions is incomplete. The most serious concern is the lack of high-quality near-surface air temperature (Tair) datasets in these areas. To address this knowledge gap, we developed an automated mapping framework for the estimation of seamless daily minimum and maximum Land Surface Temperatures (LSTs) for the Tibetan Plateau from the existing MODIS LST products for a long period of time (i.e., 2002-present). Specific machine learning methods were developed and linked with target-oriented validation and then applied to convert LST to Tair. Spatial variables in retrieving Tair, such as solar radiation and vegetation indices, were used in estimation of Tair, whereas MODIS LST products were mainly focused on temporal variation in surface air temperature. We validated our process using independent Tair products, revealing more reliable estimates on Tair; the R2 and RMSE at monthly scales generally fell in the range of 0.9-0.95 and 1-2 °C. Using these continuous and consistent Tair datasets, we found temperature increases in the elevation range between 2000-3000 m and 4000-5000 m, whereas the elevation interval at 6000-7000 m exhibits a cooling trend. The developed datasets, findings and methodology contribute to global studies on accelerated warming. © 2020 by the authors. |
英文关键词 | Machine learning; MODIS LST; Near-surface air temperature; Tibetan plateau |
语种 | 英语 |
scopus关键词 | Remote Sensing |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/158439 |
作者单位 | School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, 2007, Australia; NSW Department of Planning, Industry and Environment, 4 Parramatta Square, Parramatta, 2150, Australia; NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, 2650, Australia; Climate Change Research Centre, University of New South Wales, Sydney, 2052, Australia; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A and F University, Yangling, 712100, China |
推荐引用方式 GB/T 7714 | Zhang M.,Wang B.,Cleverly J.,et al. Creating new near-surface air temperature datasets to understand elevation-dependent warming in the Tibetan Plateau[J],2020,12(11). |
APA | Zhang M..,Wang B..,Cleverly J..,Liu D.L..,Feng P..,...&Yu Q..(2020).Creating new near-surface air temperature datasets to understand elevation-dependent warming in the Tibetan Plateau.,12(11). |
MLA | Zhang M.,et al."Creating new near-surface air temperature datasets to understand elevation-dependent warming in the Tibetan Plateau".12.11(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。