CCPortal
DOI10.1088/1748-9326/ab7d5c
Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning
Knoll L.; Breuer L.; Bach M.
发表日期2020
ISSN17489318
卷号15期号:6
英文摘要The protection of water resources and development of mitigation strategies require large-scale information on water pollution such as nitrate. Machine learning techniques like random forest (RF) have proven their worth for estimating groundwater quality based on spatial environmental predictors. We investigate the potential of RF and quantile random forest (QRF) to estimate redox conditions and nitrate concentration in groundwater (1 km × 1 km resolution) using the European Water Framework Directive groundwater monitoring network as well as spatial environmental information available throughout Germany. The RF model for nitrate achieves a good predictive performance with an R2 of 0.52. Dominant predictors are the redox conditions in the groundwater body, hydrogeological units and the percentage of arable land. An uncertainty assessment using QRF shows rather large uncertainties with a mean prediction interval (MPI) of 53.0 mg l-1. This study represents the first nation-wide data-driven assessment of the spatial distribution of groundwater nitrate concentrations for Germany. © 2020 The Author(s). Published by IOP Publishing Ltd.
英文关键词groundwater quality; large-scale; nitrate pollution; random forest; redox conditions; uncertainty
语种英语
scopus关键词Decision trees; Environmental regulations; Groundwater; Machine learning; Nitrates; Random forests; Water conservation; Water quality; Water resources; European Water Framework Directive; Groundwater monitoring networks; Machine learning techniques; Nitrate concentration; Predictive performance; Protection of water resources; Spatial environmental informations; Uncertainty assessment; Water pollution; concentration (composition); groundwater; machine learning; nitrate; redox conditions; water pollution; Germany
来源期刊Environmental Research Letters
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/154006
作者单位Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
推荐引用方式
GB/T 7714
Knoll L.,Breuer L.,Bach M.. Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning[J],2020,15(6).
APA Knoll L.,Breuer L.,&Bach M..(2020).Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning.Environmental Research Letters,15(6).
MLA Knoll L.,et al."Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning".Environmental Research Letters 15.6(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Knoll L.]的文章
[Breuer L.]的文章
[Bach M.]的文章
百度学术
百度学术中相似的文章
[Knoll L.]的文章
[Breuer L.]的文章
[Bach M.]的文章
必应学术
必应学术中相似的文章
[Knoll L.]的文章
[Breuer L.]的文章
[Bach M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。