Climate Change Data Portal
| DOI | 10.1007/s10533-020-00722-2 |
| Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems | |
| Cheng Y.; Wang J.; Ge Z.; Zhang J.; Cai Y.; Chang S.X.; Cai Z.; Chen H.Y.H. | |
| 发表日期 | 2020 |
| ISSN | 0168-2563 |
| 起始页码 | 335 |
| 结束页码 | 341 |
| 卷号 | 151期号:2020-02-03 |
| 英文摘要 | Nitrogen (N) deposition can profoundly alter soil N transformation processes and the long-term productivity of forest ecosystems. The response of soil gross N transformations to N deposition in forest ecosystems has been well studied through simulated N addition experiments. Simulated N addition experiments are conducted under a wide range of background N deposition rates. However, it remains unclear whether the response of soil gross N transformation rates to simulated N addition is dependent on background N deposition rates. Here, we collate results from the literature in forest ecosystems, and found, for the first time, that the responses of gross rates of N mineralization, nitrification, and NO3− immobilization to experimental N addition changed from positive to negative with increasing background N deposition rates with the thresholds for such changes were 3.23, 6.02, 1.90 kg N ha− 1 yr− 1, respectively. Our results suggest that background N deposition rates shall be incorporated into ecosystem models to better predict forest ecosystem N cycling under future N deposition scenarios. © 2020, Springer Nature Switzerland AG. |
| 英文关键词 | Background N deposition; Forest ecosystem; Gross N transformation rates; N addition; Thresholds |
| 语种 | 英语 |
| 来源期刊 | Biogeochemistry
![]() |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/153087 |
| 作者单位 | School of Geography, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, T6G 2E3, Canada; State Key Laboratory Cultivation Base of Geographical Environment Evolution, Nanjing, Jiangsu Province 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing, 210023, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geographical Sciences, Fujian... |
| 推荐引用方式 GB/T 7714 | Cheng Y.,Wang J.,Ge Z.,et al. Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems[J],2020,151(2020-02-03). |
| APA | Cheng Y..,Wang J..,Ge Z..,Zhang J..,Cai Y..,...&Chen H.Y.H..(2020).Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems.Biogeochemistry,151(2020-02-03). |
| MLA | Cheng Y.,et al."Background nitrogen deposition controls the effects of experimental nitrogen addition on soil gross N transformations in forest ecosystems".Biogeochemistry 151.2020-02-03(2020). |
| 条目包含的文件 | 条目无相关文件。 | |||||
| 个性服务 |
| 推荐该条目 |
| 保存到收藏夹 |
| 导出为Endnote文件 |
| 谷歌学术 |
| 谷歌学术中相似的文章 |
| [Cheng Y.]的文章 |
| [Wang J.]的文章 |
| [Ge Z.]的文章 |
| 百度学术 |
| 百度学术中相似的文章 |
| [Cheng Y.]的文章 |
| [Wang J.]的文章 |
| [Ge Z.]的文章 |
| 必应学术 |
| 必应学术中相似的文章 |
| [Cheng Y.]的文章 |
| [Wang J.]的文章 |
| [Ge Z.]的文章 |
| 相关权益政策 |
| 暂无数据 |
| 收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。